You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129417
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCosta, Kelton A. P.-
dc.contributor.authorPereira, Luis A. M.-
dc.contributor.authorNakamura, Rodrigo Y. M.-
dc.contributor.authorPereira, Clayton R.-
dc.contributor.authorPapa, Joao P.-
dc.contributor.authorFalcao, Alexandre Xavier-
dc.date.accessioned2015-10-21T21:03:16Z-
dc.date.accessioned2016-10-25T21:09:08Z-
dc.date.available2015-10-21T21:03:16Z-
dc.date.available2016-10-25T21:09:08Z-
dc.date.issued2015-02-10-
dc.identifier.citationInformation Sciences, v. 294, p. 95-108, 2015.-
dc.identifier.issn0020-0255-
dc.identifier.urihttp://hdl.handle.net/11449/129417-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129417-
dc.description.abstractWe propose a nature-inspired approach to estimate the probability density function (pdf) used for data clustering based on the optimum-path forest algorithm (OPFC). OPFC interprets a dataset as a graph, whose nodes are the samples and each sample is connected to its k-nearest neighbors in a given feature space (a k-nn graph). The nodes of the graph are weighted by their pdf values and the pdf is computed based on the distances between the samples and their k-nearest neighbors. Once the k-nn graph is defined, OPFC finds one sample (root) at each maximum of the pdf and propagates one optimum-path tree (cluster) from each root to the remaining samples of its dome. Clustering effectiveness will depend on the pdf estimation, and the proposed approach efficiently computes the best value of k for a given application. We validate our approach in the context of intrusion detection in computer networks. First, we compare OPFC with data clustering based on k-means, and self-organization maps. Second, we evaluate several metaheuristic techniques to find the best value of k. (C) 2014 Elsevier Inc. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent95-108-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectIntrusion detectionen
dc.subjectOptimum-path foresten
dc.subjectMeta-heuristicen
dc.subjectClusteringen
dc.titleA nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationUniv Estadual Paulista, Dept Comp, Bauru, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, Brazil-
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13560 Sao Carlos, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp, Bauru, Brazil-
dc.description.sponsorshipIdFAPESP: 2009/16206-1-
dc.description.sponsorshipIdFAPESP: 2010/02045-3-
dc.description.sponsorshipIdFAPESP: 2011/14058-5-
dc.description.sponsorshipIdFAPESP: 2011/14094-1-
dc.description.sponsorshipIdFAPESP: 2013/20387-7-
dc.description.sponsorshipIdCNPq: 303673/2010-9-
dc.description.sponsorshipIdCNPq: 3031821/2011-3-
dc.description.sponsorshipIdCNPq: 470571/2013-6-
dc.identifier.doihttp://dx.doi.org/10.1016/j.ins.2014.09.025-
dc.identifier.wosWOS:000346542800008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInformation Sciences-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.