You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129596
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarvalho, Veronica Oliveira de-
dc.contributor.authorSantos, Fabiano Fernandes dos-
dc.contributor.authorRezende, Solange Oliveira-
dc.contributor.authorHameurlain, A.-
dc.contributor.authorKung, J.-
dc.contributor.authorWagner, R.-
dc.contributor.authorBellatreche, L.-
dc.contributor.authorMohania, M.-
dc.date.accessioned2015-10-22T06:12:41Z-
dc.date.accessioned2016-10-25T21:15:53Z-
dc.date.available2015-10-22T06:12:41Z-
dc.date.available2016-10-25T21:15:53Z-
dc.date.issued2015-01-01-
dc.identifierhttp://link.springer.com/chapter/10.1007%2F978-3-662-46335-2_5-
dc.identifier.citationTransactions On Large-scale Data- And Knowledge- Centered Systems Xvii. Berlin: Springer-verlag Berlin, v. 8970, p. 97-127, 2015.-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/11449/129596-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129596-
dc.description.abstractIssues related to association mining have received attention, especially the ones aiming to discover and facilitate the search for interesting patterns. A promising approach, in this context, is the application of clustering in the pre-processing step. In this paper, eleven metrics are proposed to provide an assessment procedure in order to support the evaluation of this kind of approach. To propose the metrics, a subjective evaluation was done. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Besides, the metrics do the users think about aspects related to the problems and provide a flexible way to solve them. Some experiments were done in order to present how the metrics can be used and their usefulness.en
dc.format.extent97-127-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectAssociation rulesen
dc.subjectPre-processingen
dc.subjectClusteringen
dc.subjectEvaluation metricsen
dc.titleMetrics for Association Rule Clustering Assessmenten
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationInstituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil-
dc.description.affiliationInstituto de Ciências Matemáticas e de Computação, USP - Universidade de São Paulo, São Carlos, Brazil-
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil-
dc.identifier.doihttp://dx.doi.org/10.1007/978-3-662-46335-2_5-
dc.identifier.wosWOS:000355814500005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofTransactions On Large-scale Data- And Knowledge- Centered Systems Xvii-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.