You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBueno, Paulo R.-
dc.contributor.authorFeliciano, Gustavo T.-
dc.contributor.authorDavis, Jason J.-
dc.date.accessioned2015-10-22T06:16:33Z-
dc.date.accessioned2016-10-25T21:15:56Z-
dc.date.available2015-10-22T06:16:33Z-
dc.date.available2016-10-25T21:15:56Z-
dc.date.issued2015-01-01-
dc.identifierhttp://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C4CP06015F#!divAbstract-
dc.identifier.citationPhysical Chemistry Chemical Physics, v. 17, n. 14, p. 9375-9382, 2015.-
dc.identifier.issn1463-9076-
dc.identifier.urihttp://hdl.handle.net/11449/129615-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129615-
dc.description.abstractThe redox capacitance and its associated quantum component arising from the charging of molecular levels from coupled metallic states are resolvable and quantified experimentally by capacitance spectroscopy (CS). Herein we relate both this N-electron system capacitance directly to conceptual chemistry density functional theory (DFT) and the charging magnitude and associated quantum capacitive term (which resemble those introduced by Serge Luryi) to the Kohn-Sham frontier molecular orbital associated energies for isolated molecules and DFT calculated redox density of states (DOS) at metal-molecule junctions for a single molecule and molecular films confined at metallic interfaces. DFT computational analyses reveal the orbital energetic alignment between the iron redox site and those states in the metal specifically when metal-molecule junctions are formed. The impact of this on the resolved chemical softness and capacitance is also revealed. These analyses, additionally, are shown to numerically resolve redox capacitance in a manner that accurately reproduces experimental observations for molecular films. These observations both theoretically underpin CS and provide guidance on its optimised application in interfacial analyses involving molecular electrochemistry and derived sensory applications.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent9375-9382-
dc.language.isoeng-
dc.publisherRoyal Soc Chemistry-
dc.sourceWeb of Science-
dc.titleCapacitance spectroscopy and density functional theoryen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Oxford-
dc.description.affiliationUniv Estadual Paulista, Sao Paulo State Univ, Inst Chem, Dept Phys Chem,Nanobion Grp, BR-14800060 Sao Paulo, Brazil-
dc.description.affiliationUniv Oxford, Dept Chem, Oxford OX1 3QZ, England-
dc.description.affiliationUnespUniv Estadual Paulista, Sao Paulo State Univ, Inst Chem, Departamento de Física e Química,Nanobion Grp, BR-14800060 Sao Paulo, Brazil-
dc.description.sponsorshipIdFAPESP: 2012-22820-7-
dc.identifier.doihttp://dx.doi.org/10.1039/c4cp06015f-
dc.identifier.wosWOS:000351933600092-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysical Chemistry Chemical Physics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.