You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Alex-
dc.contributor.authorSaotome, Osamu-
dc.contributor.authorSampaio, Daniel Souza-
dc.date.accessioned2015-10-22T06:25:28Z-
dc.date.accessioned2016-10-25T21:16:02Z-
dc.date.available2015-10-22T06:25:28Z-
dc.date.available2016-10-25T21:16:02Z-
dc.date.issued2015-02-25-
dc.identifierhttp://jivp.eurasipjournals.com/content/2015/1/6-
dc.identifier.citationEurasip Journal On Image And Video Processing. Cham: Springer International Publishing Ag, v. 2015, n. 6, p. 1-11, 2015.-
dc.identifier.issn1687-5281-
dc.identifier.urihttp://hdl.handle.net/11449/129661-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129661-
dc.description.abstractThis paper presents an approach to classify static foreground blobs in surveillance scenarios. Possible application is the detection of abandoned and removed objects. In order to classify the blobs, we developed two novel features based on the assumption that the neighborhood of a removed object is fairly continuous. In other words, there is a continuity, in the input frame, ranging from inside the corresponding blob contour to its surrounding region. Conversely, it is usual to find a discontinuity, i.e., edges, surrounding an abandoned object. We combined the two features to provide a reliable classification. In the first feature, we use several local histograms as a measure of similarity instead of previous attempts that used a single one. In the second, we developed an innovative method to quantify the ratio of the blob contour that corresponds to actual edges in the input image. A representative set of experiments shows that the proposed approach can outperform other equivalent techniques published recently.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent1-11-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectAbandoned and removed object detectionen
dc.subjectVideo surveillanceen
dc.subjectVideo segmentationen
dc.titlePatch-based local histograms and contour estimation for static foreground classificationen
dc.typeoutro-
dc.contributor.institutionInstituto Tecnológico de Aeronáutica (ITA)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstituto Tecnológico de Aeronáutica (ITA), Praça Mal. Eduardo Gomes, 50, São José dos Campos, BR, CEP 12.228-900-
dc.description.affiliationUnespUniversidade Estadual Paulista, Av. Ariberto Pereira da Cunha, 333, Guaratinguetá, BR, CEP 12.516-410-
dc.identifier.doihttp://dx.doi.org/10.1186/s13640-015-0060-y-
dc.identifier.wosWOS:000356723200001-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000356723200001.pdf-
dc.relation.ispartofEurasip Journal On Image And Video Processing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.