Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/129762
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Figueiredo, Giovany Malcher | - |
dc.contributor.author | Pimenta, Marcos Tadeu de Oliveira | - |
dc.date.accessioned | 2015-10-22T06:45:19Z | - |
dc.date.accessioned | 2016-10-25T21:16:17Z | - |
dc.date.available | 2015-10-22T06:45:19Z | - |
dc.date.available | 2016-10-25T21:16:17Z | - |
dc.date.issued | 2015-04-07 | - |
dc.identifier | http://arxiv.org/abs/1304.4462 | - |
dc.identifier.citation | Electronic Journal Of Differential Equations. San Marcos: Texas State University, p. 1-18, 2015. | - |
dc.identifier.issn | 1072-6691 | - |
dc.identifier.uri | http://hdl.handle.net/11449/129762 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/129762 | - |
dc.description.abstract | In this work we study an existence and multiplicity of solutions for the prescribed mean-curvature problem with critical growth,-div (del u/root 1+vertical bar del u vertical bar(2)) = lambda vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(2*-2)u in Omegau = 0 on partial derivative Omega,where Omega is a bounded smooth domain of R-N, N >= 3 and 1 < q < 2. To employ variational arguments, we consider an auxiliary problem which is proved to have infinitely many solutions by genus theory. A clever estimate in the gradient of the solutions of the modified problem is necessary to recover solutions of the original problem. | en |
dc.description.sponsorship | PROCAD/CASADINHO | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 1-18 | - |
dc.language.iso | eng | - |
dc.publisher | Texas State University | - |
dc.source | Web of Science | - |
dc.subject | Prescribed mean-curvature problem | en |
dc.subject | Critical exponent | en |
dc.subject | Variational methods | en |
dc.title | Existence and multiplicity of solutions for a prescribed mean-curvature problem with critical growth | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal do Pará (UFPA) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Fed Univ Para, Fac Matemat, BR-66075110 Belem, PA, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, Fac Ciencias &Tecnol, BR-19060900 Presidente Prudente, SP, Brasil | - |
dc.description.affiliationUnesp | Faculdade de Ciˆencias e Tecnlogia Universidade Estadual Paulista - Unesp 19060-900, Presidente Prudente - SP, Brasil | - |
dc.description.sponsorshipId | PROCAD/CASADINHO: 552101/2011-7 | - |
dc.description.sponsorshipId | CNPq: 301242/2011-9 | - |
dc.description.sponsorshipId | CNPq: 200237/2012-8 | - |
dc.description.sponsorshipId | FAPESP: 2014/16136-1 | - |
dc.description.sponsorshipId | CNPq: 442520/2014-0 | - |
dc.identifier.wos | WOS:000352639600001 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Electronic Journal Of Differential Equations | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.