You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129764
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJorge, Grasiele C.-
dc.contributor.authorAndrade, Antonio Aparecido de-
dc.contributor.authorCosta, Sueli I. R.-
dc.contributor.authorStrapasson, Joao E.-
dc.date.accessioned2015-10-22T06:45:45Z-
dc.date.accessioned2016-10-25T21:16:17Z-
dc.date.available2015-10-22T06:45:45Z-
dc.date.available2016-10-25T21:16:17Z-
dc.date.issued2015-05-01-
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0021869315000526-
dc.identifier.citationJournal Of Algebra. San Diego: Academic Press Inc Elsevier Science, v. 429, p. 218-235, 2015.-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/11449/129764-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129764-
dc.description.abstractThe aim of this paper is to investigate rotated versions of the densest known lattices in dimensions 2, 3, 4, 5, 6, 7, 8, 12 and 24 constructed via ideals and free Z-modules that are not ideals in subfields of cyclotomic fields. The focus is on totally real number fields and the associated full diversity lattices which may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. We also discuss on the existence of a number field K such that it is possible to obtain the lattices A(2), E-6 and E-7 via a twisted embedding applied to a fractional ideal of O-K. (C) 2015 Elsevier Inc. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent218-235-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectAlgebraic number theoryen
dc.subjectLatticesen
dc.subjectPacking densityen
dc.subjectDiversityen
dc.subjectMinimum product distanceen
dc.subjectCoding theoryen
dc.titleAlgebraic constructions of densest latticesen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUniv Fed Sao Paulo, UNIFESP, BR-12247014 Sao Jose Dos Campos, SP, Brazil-
dc.description.affiliationSao Paulo State Univ, UNESP, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, UNICAMP, BR-13083859 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, UNICAMP, BR-13484350 Limeira, SP, Brazil-
dc.description.affiliationUnespSao Paulo State Univ, UNESP, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdCNPq: 150802/2012-9-
dc.description.sponsorshipIdCNPq: 312926/2013-8-
dc.description.sponsorshipIdFAPESP: 2013/25977-7-
dc.identifier.doihttp://dx.doi.org/10.1016/j.jalgebra.2014.12.044-
dc.identifier.wosWOS:000352183600009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal Of Algebra-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.