You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129779
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoareto, Marcelo-
dc.contributor.authorCesar, Jonatas-
dc.contributor.authorLeite, Vitor Barbanti Pereira-
dc.contributor.authorCaticha, Nestor-
dc.date.accessioned2015-10-22T06:48:40Z-
dc.date.accessioned2016-10-25T21:16:25Z-
dc.date.available2015-10-22T06:48:40Z-
dc.date.available2016-10-25T21:16:25Z-
dc.date.issued2015-05-01-
dc.identifierhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6977958-
dc.identifier.citationIeee-acm Transactions On Computational Biology And Bioinformatics. Los Alamitos: Ieee Computer Soc, v. 12, n. 3, p. 705-711, 2015.-
dc.identifier.issn1545-5963-
dc.identifier.urihttp://hdl.handle.net/11449/129779-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129779-
dc.description.abstractWe introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.en
dc.description.sponsorshipCenter for the Study of Natural and Artificial Information Processing Systems of the University of Sao Paulo (CNAIPS, Nucleo de Apoio a Pesquisa da Universidade de Sao Paulo)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent705-711-
dc.language.isoeng-
dc.publisherIeee Computer Soc-
dc.sourceWeb of Science-
dc.subjectSuvrelen
dc.subjectRelevance Learningen
dc.subjectAnalytic metric learningen
dc.subjectProteomicsen
dc.subjectMetabolomicsen
dc.subjectGenomicsen
dc.subjectFeature selectionen
dc.subjectDistance learningen
dc.titleSupervised variational relevance learning, an analytic geometric feature selection with applications to omic datasetsen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationInstituto de Física, University of Sao Paulo, Brazil-
dc.description.affiliationUnespIBILCE, Universidade Estadual Paulista, Sao José do Rio Preto, São Paulo,-
dc.identifier.doihttp://dx.doi.org/10.1109/TCBB.2014.2377750-
dc.identifier.wosWOS:000356608100022-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIeee-acm Transactions On Computational Biology And Bioinformatics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.