Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/129790
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ho, Linda Lee | - |
dc.contributor.author | Costa, Antonio | - |
dc.date.accessioned | 2015-10-22T07:08:45Z | - |
dc.date.accessioned | 2016-10-25T21:16:29Z | - |
dc.date.available | 2015-10-22T07:08:45Z | - |
dc.date.available | 2016-10-25T21:16:29Z | - |
dc.date.issued | 2015-06-01 | - |
dc.identifier | http://onlinelibrary.wiley.com/doi/10.1002/qre.1628/abstract | - |
dc.identifier.citation | Quality And Reliability Engineering International. Hoboken: Wiley-blackwell, v. 31, n. 4, p. 683-693, 2015. | - |
dc.identifier.issn | 0748-8017 | - |
dc.identifier.uri | http://hdl.handle.net/11449/129790 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/129790 | - |
dc.description.abstract | This article proposes two Shewhart charts, denoted np(xy) and np(w) charts, which use attribute inspection to control the mean vector ((x); (y)) of bivariate processes. The units of the sample are classified as first-class, second-class, or third-class units, according to discriminate limits and the values of their two quality characteristics, X and Y. When the np(xy) chart is in use, the monitoring statistic is M=N-1+N-2, where N-1 and N-2 are the number of sample units with a second-class and third-class classification, respectively. When the np(w) chart is in use, the monitoring statistic is W=N-1+2N(2). We assume that the quality characteristics X and Y follow a bivariate normal distribution and that the assignable cause shifts the mean vector without changing the covariance matrix. In general, the synthetic np(xy) and np(w) charts require twice larger samples to outperform the T-2 chart. Copyright (c) 2014 John Wiley &Sons, Ltd. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 683-693 | - |
dc.language.iso | eng | - |
dc.publisher | Wiley-Blackwell | - |
dc.source | Web of Science | - |
dc.subject | Discriminating limits | en |
dc.subject | Np(xy) chart | en |
dc.subject | Np(w) chart | en |
dc.subject | Bivariate normal processes | en |
dc.subject | Attribute and variable control charts | en |
dc.subject | Synthetic chart | en |
dc.subject | T-2 chart | en |
dc.title | Attribute charts for monitoring the mean vector of bivariate processes | en |
dc.type | outro | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Sao Paulo, Dept Prod Engn, BR-05508900 Sao Paulo, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista, Dept Prod Engn, Sao Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Prod Engn, Sao Paulo, Brazil | - |
dc.identifier.doi | http://dx.doi.org/10.1002/qre.1628 | - |
dc.identifier.wos | WOS:000354883900013 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Quality And Reliability Engineering International | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.