Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/129866
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Salazar, F. J. T. | - |
dc.contributor.author | Macau, E. E. N. | - |
dc.contributor.author | Winter, Othon C. | - |
dc.date.accessioned | 2015-10-22T07:24:05Z | - |
dc.date.accessioned | 2016-10-25T21:16:40Z | - |
dc.date.available | 2015-10-22T07:24:05Z | - |
dc.date.available | 2016-10-25T21:16:40Z | - |
dc.date.issued | 2015-07-01 | - |
dc.identifier | http://link.springer.com/article/10.1007%2Fs40314-014-0154-7 | - |
dc.identifier.citation | Computational and Applied Mathematics. Heidelberg: Springer Heidelberg, v. 34, n. 2, p. 461-475, 2015. | - |
dc.identifier.issn | 0101-8205 | - |
dc.identifier.uri | http://hdl.handle.net/11449/129866 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/129866 | - |
dc.description.abstract | In this work, we present a study about the determination of the optimal time-energy cost vector, i.e., flight time and total (velocity change) spent in an orbital transfer of a spacecraft from an Earth circular parking orbit to a circular orbit around the Moon. The method used to determine the flight time and total is based on the well-known approach of patched conic in which the three-body problem that involves Earth, Moon and spacecraft is decomposed into two 'two bodies'problems, i.e., Earth-spacecraft and Moon-spacecraft. Thus, the trajectory followed by the spacecraft is a composition of two parts: The first one, when the spacecraft is within the Earth's sphere of influence; The second one, when the spacecraft enters into the Moon's sphere of influence. Therefore, the flight time and total to inject the spacecraft into the lunar trajectory and place it around the Moon can be determined using the expressions for the two-body problem. In this study, we use the concept of Pareto Frontier to find a set of parameters in the geometry of patched-conic solution that minimizes simultaneously the flight time and total of the mission. These results present different possibilities for performing an Earth-Moon transfer where two conflicting objectives are optimized. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 461-475 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | Patched-conic approximation | en |
dc.subject | Sphere of influence | en |
dc.subject | Pareto Frontier | en |
dc.title | Pareto Frontier for the time-energy cost vector to an Earth-Moon transfer orbit using the patched-conic approximation | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Instituto Nacional de Pesquisas Espaciais (INPE) | - |
dc.description.affiliation | UNESP, Grp Dinam Orbital &Planetol, BR-12516410 Guaratingueta, SP, Brazil | - |
dc.description.affiliation | Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP, Grp Dinam Orbital &Planetol, BR-12516410 Guaratingueta, SP, Brazil | - |
dc.description.sponsorshipId | FAPESP: 2008/06066-5 | - |
dc.description.sponsorshipId | FAPESP: 2011/08171-3 | - |
dc.description.sponsorshipId | FAPESP: 2013/03233-6 | - |
dc.identifier.doi | http://dx.doi.org/10.1007/s40314-014-0154-7 | - |
dc.identifier.wos | WOS:000357267300005 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Computational and Applied Mathematics | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.