Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/130175
Registro de metadados completo
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Fernandes, Silas E. N. | - |
dc.contributor.author | Pilastri, Andre Luiz | - |
dc.contributor.author | Pereira, Luis A. M. | - |
dc.contributor.author | Pires, Rafael G. | - |
dc.contributor.author | Papa, João P. | - |
dc.date.accessioned | 2015-11-03T15:29:57Z | - |
dc.date.accessioned | 2016-10-25T21:17:23Z | - |
dc.date.available | 2015-11-03T15:29:57Z | - |
dc.date.available | 2016-10-25T21:17:23Z | - |
dc.date.issued | 2014-01-01 | - |
dc.identifier | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6915316 | - |
dc.identifier.citation | 2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 259-265, 2014. | - |
dc.identifier.uri | http://hdl.handle.net/11449/130175 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/130175 | - |
dc.description.abstract | In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets. | en |
dc.format.extent | 259-265 | - |
dc.language.iso | eng | - |
dc.publisher | Ieee | - |
dc.source | Web of Science | - |
dc.subject | Machine learning | en |
dc.subject | Kernel functions | en |
dc.subject | Polynomial powers of sigmoid | en |
dc.subject | PPS-Radial | en |
dc.subject | Support vector machines | en |
dc.title | Learning kernels for support vector machines with polynomial powers of sigmoid | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | - |
dc.contributor.institution | Universidade do Estado de Mato Grosso (UNEMAT) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Department of Computing, UFSCar - Federal University of Sao Carlos, São Carlos - SP, Brazil. | - |
dc.description.affiliation | Department of Computing, UNEMAT - Univ State of Mato Grosso, Alto Araguaia - MT, Brazil. | - |
dc.description.affiliation | Institute of Computing, University of Campinas, Campinas - SP, Brazil. | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista, Department of Computing, Bauru - SP, Brazil. | - |
dc.identifier.doi | http://dx.doi.org/10.1109/SIBGRAPI.2014.36 | - |
dc.identifier.wos | WOS:000352613900034 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | 2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) | - |
Aparece nas coleções: | Artigos, TCCs, Teses e Dissertações da Unesp |
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.