You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/130310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCorreia, Alexandre C. M.-
dc.contributor.authorBouee, Gwenacl-
dc.contributor.authorLaskar, Jacques-
dc.contributor.authorRodrieguez, Adrian-
dc.date.accessioned2015-11-03T18:23:37Z-
dc.date.accessioned2016-10-25T21:20:52Z-
dc.date.available2015-11-03T18:23:37Z-
dc.date.available2016-10-25T21:20:52Z-
dc.date.issued2014-11-01-
dc.identifierhttp://www.aanda.org/articles/aa/abs/2014/11/aa24211-14/aa24211-14.html-
dc.identifier.citationAstronomy &astrophysics. Les Ulis Cedex A: Edp Sciences S A, v. 571, p. 1-16, 2014.-
dc.identifier.issn0004-6361-
dc.identifier.urihttp://hdl.handle.net/11449/130310-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/130310-
dc.description.abstractIn this paper we present a new approach to tidal theory. Assuming a Maxwell viscoelastic rheology, we compute the instantaneous deformation of celestial bodies using a differential equation for the gravity field coefficients. This method allows large eccentricities and it is not limited to quasi-periodic perturbations. It can take into account an extended class of perturbations, including chaotic motions and transient events. We apply our model to some already detected eccentric hot Jupiters and super-Earths in planar configurations. We show that when the relaxation time of the deformation is larger than the orbital period, spin-orbit equilibria arise naturally at half-integers of the mean motion, even for gaseous planets. In the case of super-Earths, these equilibria can be maintained for very low values of eccentricity. Our method can also be used to study planets with complex internal structures and other rheologies.en
dc.description.sponsorshipPNP-CNRS-
dc.description.sponsorshipCS of Paris Observatory-
dc.description.sponsorshipFrance-Portugal program-
dc.description.sponsorshipFCT-Portugal-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent1-16-
dc.language.isoeng-
dc.publisherEdp Sciences S A-
dc.sourceWeb of Science-
dc.subjectCelestial mechanicsen
dc.subjectPlanets and satellites: generalen
dc.titleDeformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheologyen
dc.typeoutro-
dc.contributor.institutionUniversidade de Aveiro-
dc.contributor.institutionObservatoire de Paris-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France-
dc.description.affiliationDepartamento de Física, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.-
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas, UNESP, Av. 24-A 1515, CEP 13506-900, Rio Claro, SP, Brazil-
dc.description.sponsorshipIdFrance-Portugal program: PICS05998-
dc.description.sponsorshipIdFCT-Portugal: PEst-C/CTM/LA0025/2011-
dc.description.sponsorshipIdFAPESP: 2009/16900-5-
dc.description.sponsorshipIdFAPESP: 2012/13731-0-
dc.identifier.doihttp://dx.doi.org/10.1051/0004-6361/201424211-
dc.identifier.wosWOS:000345282600061-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofAstronomy &astrophysics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.