You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/130383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Danillo Roberto-
dc.contributor.authorDelpiano, José-
dc.contributor.authorPapa, João Paulo-
dc.date.accessioned2015-11-03T18:26:18Z-
dc.date.accessioned2016-10-25T21:21:02Z-
dc.date.available2015-11-03T18:26:18Z-
dc.date.available2016-10-25T21:21:02Z-
dc.date.issued2014-01-01-
dc.identifierhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6915299-
dc.identifier.citation2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 125-132, 2014.-
dc.identifier.urihttp://hdl.handle.net/11449/130383-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/130383-
dc.description.abstractOptical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique.en
dc.format.extent125-132-
dc.language.isoeng-
dc.publisherIeee-
dc.sourceWeb of Science-
dc.subjectSocial-Spider optimizationen
dc.subjectOptical flowen
dc.subjectEvolutionary optimization methodsen
dc.titleEvolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environmentsen
dc.typeoutro-
dc.contributor.institutionUniversidade dos Andes (UANDES)-
dc.contributor.institutionUniversidade do Oeste Paulista (UNOESTE)Universidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Western Sao Paulo UNOESTE, Presidente Prudente, Brazil-
dc.description.affiliationUniv Los Andes, Santiago, Chile-
dc.description.affiliationSao Paulo State Univ UNESP, Bauru, Brazil-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP), Bauru, Brazil-
dc.identifier.doihttp://dx.doi.org/10.1109/SIBGRAPI.2014.22-
dc.identifier.wosWOS:000352613900017-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.