Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/130383
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pereira, Danillo Roberto | - |
dc.contributor.author | Delpiano, José | - |
dc.contributor.author | Papa, João Paulo | - |
dc.date.accessioned | 2015-11-03T18:26:18Z | - |
dc.date.accessioned | 2016-10-25T21:21:02Z | - |
dc.date.available | 2015-11-03T18:26:18Z | - |
dc.date.available | 2016-10-25T21:21:02Z | - |
dc.date.issued | 2014-01-01 | - |
dc.identifier | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6915299 | - |
dc.identifier.citation | 2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 125-132, 2014. | - |
dc.identifier.uri | http://hdl.handle.net/11449/130383 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/130383 | - |
dc.description.abstract | Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work we have proposed an evolutionary-based framework for such task, thus introducing three techniques for such purpose: Particle Swarm Optimization, Harmony Search and Social-Spider Optimization. The proposed framework has been compared against with the well-known Large Displacement Optical Flow approach, obtaining the best results in three out eight image sequences provided by a public dataset. Additionally, the proposed framework can be used with any other optimization technique. | en |
dc.format.extent | 125-132 | - |
dc.language.iso | eng | - |
dc.publisher | Ieee | - |
dc.source | Web of Science | - |
dc.subject | Social-Spider optimization | en |
dc.subject | Optical flow | en |
dc.subject | Evolutionary optimization methods | en |
dc.title | Evolutionary optimization applied for fine-tuning parameter estimation in optical flow-based environments | en |
dc.type | outro | - |
dc.contributor.institution | Universidade dos Andes (UANDES) | - |
dc.contributor.institution | Universidade do Oeste Paulista (UNOESTE)Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Western Sao Paulo UNOESTE, Presidente Prudente, Brazil | - |
dc.description.affiliation | Univ Los Andes, Santiago, Chile | - |
dc.description.affiliation | Sao Paulo State Univ UNESP, Bauru, Brazil | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista (UNESP), Bauru, Brazil | - |
dc.identifier.doi | http://dx.doi.org/10.1109/SIBGRAPI.2014.22 | - |
dc.identifier.wos | WOS:000352613900017 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | 2014 27th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.