You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/130465
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlbuquerque, Luiz C. de-
dc.contributor.authorDalmazi, D.-
dc.date.accessioned2014-05-20T15:24:41Z-
dc.date.accessioned2016-10-25T21:21:13Z-
dc.date.available2014-05-20T15:24:41Z-
dc.date.available2016-10-25T21:21:13Z-
dc.date.issued2003-06-01-
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.67.066108-
dc.identifier.citationPhysical Review E. College Pk: Amer Physical Soc, v. 67, n. 6, 7 p., 2003.-
dc.identifier.issn1063-651X-
dc.identifier.issn1539-3755-
dc.identifier.urihttp://hdl.handle.net/11449/130465-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/130465-
dc.description.abstractWe present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.en
dc.format.extent7-
dc.language.isoeng-
dc.publisherAmer Physical Soc-
dc.sourceScopus-
dc.subjectCalculations-
dc.subjectConvergence of numerical methods-
dc.subjectCorrelation methods-
dc.subjectEigenvalues and eigenfunctions-
dc.subjectGraph theory-
dc.subjectMagnetic fields-
dc.subjectMathematical models-
dc.subjectRandom processes-
dc.subjectTemperature-
dc.subjectFeynman diagram-
dc.subjectIsing model-
dc.subjectRandom graph-
dc.subjectThree-state Potts model-
dc.subjectTwo-state Potts model-
dc.subjectYang-Lee zeros-
dc.subjectStatistical mechanics-
dc.titleYang-Lee zeros of the two- and three-state Potts model defined on π3 Feynman diagramsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionFaculdade de Tecnologia de São Paulo (CEETEPS)-
dc.description.affiliationFaculdade de Tecnologia de Sao Paulo CEETEPS-UNESP Praca Fernando Prestes, 30, 01124-060 Sao Paulo, Sao Paulo-
dc.description.affiliationUNESP Campus de Guaratingueta DFQ, Avenida Dr. Ariberto Pereira da Cunh, 12516-410 Guaratingueta, Sao Paulo-
dc.description.affiliationUnespFaculdade de Tecnologia de Sao Paulo CEETEPS-UNESP Praca Fernando Prestes, 30, 01124-060 Sao Paulo, Sao Paulo-
dc.description.affiliationUnespUNESP Campus de Guaratingueta DFQ, Avenida Dr. Ariberto Pereira da Cunh, 12516-410 Guaratingueta, Sao Paulo-
dc.identifier.doi10.1103/PhysRevE.67.066108-
dc.identifier.wosWOS:000184085000020-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file2-s2.0-42749108435.pdf-
dc.relation.ispartofPhysical Review E-
dc.identifier.scopus2-s2.0-42749108435-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.