You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/130489
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJaulent, Marcel-
dc.contributor.authorManna, Miguel A.-
dc.contributor.authorMartínez Alonso, Luis-
dc.date.accessioned2014-05-27T06:33:48Z-
dc.date.accessioned2016-10-25T21:21:17Z-
dc.date.available2014-05-27T06:33:48Z-
dc.date.available2016-10-25T21:21:17Z-
dc.date.issued1989-08-01-
dc.identifierhttp://dx.doi.org/10.1063/1.528251-
dc.identifier.citationJournal of Mathematical Physics, v. 30, n. 8, p. 1662-1673, 1989.-
dc.identifier.issn0022-2488-
dc.identifier.urihttp://hdl.handle.net/11449/130489-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/130489-
dc.description.abstractA multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics.en
dc.format.extent1662-1673-
dc.language.isoeng-
dc.publisherAmerican Institute of Physics (AIP)-
dc.sourceScopus-
dc.titleMultiseries Lie groups and asymptotic modules for characterizing and solving integrable modelsen
dc.typeoutro-
dc.contributor.institutionUniversité des Sciences et Techniques du Languedoc-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidad Complutense-
dc.description.affiliationLaboratoire de Physique Mathématique Université des Sciences et Techniques du Languedoc, 34060 Montpellier Cedex-
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405 São Paulo-
dc.description.affiliationDepartamento de Métodos Matemáticos de la Física Facultad de Ciencias Físicas Universidad Complutense, 28040, Madrid-
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405 São Paulo-
dc.identifier.doi10.1063/1.528251-
dc.identifier.wosWOS:A1989AH02700002-
dc.rights.accessRightsAcesso restrito-
dc.identifier.file2-s2.0-36549102431.pdf-
dc.relation.ispartofJournal of Mathematical Physics-
dc.identifier.scopus2-s2.0-36549102431-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.