Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/130718
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorMarar, João Fernando-
dc.contributor.authorPatrocinio, Ana Claudia-
dc.date.accessioned2014-05-27T11:19:41Z-
dc.date.accessioned2016-10-25T21:21:51Z-
dc.date.available2014-05-27T11:19:41Z-
dc.date.available2016-10-25T21:21:51Z-
dc.date.issued1999-01-01-
dc.identifierhttp://dx.doi.org/10.1117/12.357191-
dc.identifier.citationSignal Processing, Sensor Fusion, and Target Recognition Viii. Bellingham: Spie-int Soc Optical Engineering, v. 3720, p. 451-458, 1999.-
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/11449/130718-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/130718-
dc.description.abstractFunction approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.en
dc.format.extent451-458-
dc.language.isoeng-
dc.publisherSpie - Int Soc Optical Engineering-
dc.sourceScopus-
dc.subjectApproximation theory-
dc.subjectBackpropagation-
dc.subjectFunction evaluation-
dc.subjectPolynomials-
dc.subjectFunction approximation-
dc.subjectPolynomials powers of sigmoid (PPS)-
dc.subjectMultilayer neural networks-
dc.titleComparative study between powers of sigmoid functions, MLP-backpropagation and polynomials in function approximation problemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, UNESP, Adapt Syst & Intelligent Comp Lab, Dept Comp Sci, Bauru, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Adapt Syst & Intelligent Comp Lab, Dept Comp Sci, Bauru, SP, Brazil-
dc.identifier.doi10.1117/12.357191-
dc.identifier.wosWOS:000082902100045-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering-
dc.identifier.scopus2-s2.0-0032683364-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.