You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/135581
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMansano, Alex Fernandes-
dc.contributor.authorMatsuoka, Jéssica Akemi-
dc.contributor.authorAbiuzzi, Nikolas Aleksander da Mota-
dc.contributor.authorAfonso, Luis Cláudio Súgi-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorFaria, Fabio Augusto-
dc.contributor.authorTorres, Ricardo da Silva-
dc.contributor.authorFalcão, A. X.-
dc.date.accessioned2016-03-02T13:03:22Z-
dc.date.accessioned2016-10-25T21:33:00Z-
dc.date.available2016-03-02T13:03:22Z-
dc.date.available2016-10-25T21:33:00Z-
dc.date.issued2014-
dc.identifierhttp://dx.doi.org/10.5565/rev/elcvia.566-
dc.identifier.citationELCVIA. Electronic letters on computer vision and image analysis, v. 13, n. 3, p. 13-27, 2014.-
dc.identifier.issn1577-5097-
dc.identifier.urihttp://hdl.handle.net/11449/135581-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/135581-
dc.description.abstractIn this paper, we deal with the descriptor combination problem in image classification tasks. This problem refers to the definition of an appropriate combination of image content descriptors that characterize different visual properties, such as color, shape and texture. In this paper, we propose to model the descriptor combination as a swarm-based optimization problem, which finds out the set of parameters that maximizes the classification accuracy of the Optimum-Path Forest (OPF) classifier. In our model, a descriptor is seen as a pair composed of a feature extraction algorithm and a suitable distance function. Our strategy here is to combine distance scores defined by different descriptors, as well as to employ them to weight OPF edges, which connect samples in the feature space. An extensive evaluation of several swarm-based optimization techniques was performed. Experimental results have demonstrated the robustness of the proposed combination approach.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent13-27-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectImage classificationen
dc.subjectDescriptor combinationen
dc.subjectSwarm intelligenceen
dc.subjectOptimum-path foresten
dc.titleSwarm-based descriptor combination and its application for image classificationen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Computação, Faculdade de Ciências de Bauru, Bauru, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Jardim Paraíso, CEP 17033360, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Computação, Faculdade de Ciências de Bauru, Bauru, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Jardim Paraíso, CEP 17033360, SP, Brasil-
dc.description.sponsorshipIdCNPq: 306580/2012-8-
dc.description.sponsorshipIdCNPq: 484254/2012-0-
dc.description.sponsorshipIdCNPq: 470571/2013-6-
dc.description.sponsorshipIdCNPq: 303182/2011-3-
dc.description.sponsorshipIdCNPq: 303673/2010-9-
dc.description.sponsorshipIdCNPq: 479070/2013-0-
dc.description.sponsorshipIdCNPq: 1260-12-0-
dc.description.sponsorshipIdFAPESP: 2010/14910-0-
dc.description.sponsorshipIdFAPESP: 2013/20387-7-
dc.description.sponsorshipIdFAPESP: 2013/50169-1-
dc.identifier.doi10.5565/rev/elcvia.566-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofELCVIA. Electronic letters on computer vision and image analysis-
dc.identifier.lattes9039182932747194-
dc.identifier.lattes0686979081263816-
dc.identifier.lattes3828728429230356-
dc.identifier.lattes3790201696145434-
dc.identifier.lattes7533729699758819-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.