Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/135723
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gehring Júnior, Waldemar | - |
dc.contributor.author | Vieira, Fábio Henrique Antunes | - |
dc.contributor.author | Affonso, Carlos | - |
dc.contributor.author | Alves, Manoel Cleber de Sampaio | - |
dc.contributor.author | Gonçalves, Marcos Tadeu Tiburcio | - |
dc.date.accessioned | 2016-03-02T13:04:10Z | - |
dc.date.accessioned | 2016-10-25T21:33:20Z | - |
dc.date.available | 2016-03-02T13:04:10Z | - |
dc.date.available | 2016-10-25T21:33:20Z | - |
dc.date.issued | 2014 | - |
dc.identifier | http://dx.doi.org/10.4028/www.scientific.net/AMM.590.458 | - |
dc.identifier.citation | Applied Mechanics and Materials, v. 590, n. 2014, p. 458-462, 2014. | - |
dc.identifier.issn | 1662-7482 | - |
dc.identifier.uri | http://hdl.handle.net/11449/135723 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/135723 | - |
dc.description.abstract | In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules. | en |
dc.format.extent | 458-462 | - |
dc.language.iso | eng | - |
dc.source | Currículo Lattes | - |
dc.subject | Artificial Intelligence (AI) | en |
dc.subject | Neuro-Fuzzy | en |
dc.subject | Production | en |
dc.subject | Vibration | en |
dc.subject | Wood processing | en |
dc.title | Artificial neural networks applied to bandsawing process control | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Guaratinguetá, Guaratinguetá, Avenida Doutor Ariberto Pereira da Cunha, 333, Portal das Colinas, CEP 12516410, SP, Brasil | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Guaratinguetá, Guaratinguetá, Avenida Doutor Ariberto Pereira da Cunha, 333, Portal das Colinas, CEP 12516410, SP, Brasil | - |
dc.identifier.doi | 10.4028/www.scientific.net/AMM.590.458 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Applied Mechanics and Materials | - |
dc.identifier.lattes | 4994819346783458 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.