You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/135723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGehring Júnior, Waldemar-
dc.contributor.authorVieira, Fábio Henrique Antunes-
dc.contributor.authorAffonso, Carlos-
dc.contributor.authorAlves, Manoel Cleber de Sampaio-
dc.contributor.authorGonçalves, Marcos Tadeu Tiburcio-
dc.date.accessioned2016-03-02T13:04:10Z-
dc.date.accessioned2016-10-25T21:33:20Z-
dc.date.available2016-03-02T13:04:10Z-
dc.date.available2016-10-25T21:33:20Z-
dc.date.issued2014-
dc.identifierhttp://dx.doi.org/10.4028/www.scientific.net/AMM.590.458-
dc.identifier.citationApplied Mechanics and Materials, v. 590, n. 2014, p. 458-462, 2014.-
dc.identifier.issn1662-7482-
dc.identifier.urihttp://hdl.handle.net/11449/135723-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/135723-
dc.description.abstractIn the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.en
dc.format.extent458-462-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectArtificial Intelligence (AI)en
dc.subjectNeuro-Fuzzyen
dc.subjectProductionen
dc.subjectVibrationen
dc.subjectWood processingen
dc.titleArtificial neural networks applied to bandsawing process controlen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Guaratinguetá, Guaratinguetá, Avenida Doutor Ariberto Pereira da Cunha, 333, Portal das Colinas, CEP 12516410, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Guaratinguetá, Guaratinguetá, Avenida Doutor Ariberto Pereira da Cunha, 333, Portal das Colinas, CEP 12516410, SP, Brasil-
dc.identifier.doi10.4028/www.scientific.net/AMM.590.458-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Mechanics and Materials-
dc.identifier.lattes4994819346783458-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.