Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/135783
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ValÊncio, C. R. | - |
dc.contributor.author | Guimarães, Diogo Lemos | - |
dc.contributor.author | Zafalon, Geraldo Francisco Donega | - |
dc.contributor.author | Neves, Leandro Alves | - |
dc.contributor.author | Colombini, Angelo C. | - |
dc.date.accessioned | 2016-03-02T13:04:25Z | - |
dc.date.accessioned | 2016-10-25T21:33:28Z | - |
dc.date.available | 2016-03-02T13:04:25Z | - |
dc.date.available | 2016-10-25T21:33:28Z | - |
dc.date.issued | 2015 | - |
dc.identifier | http://link.springer.com/chapter/10.1007/978-3-662-46078-8_46 | - |
dc.identifier.citation | Lecture Notes in Computer Science, v. 8939, p. 555-565, 2015. | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/11449/135783 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/135783 | - |
dc.description.abstract | The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert. | en |
dc.description.abstract | Este artigo foi publicado em Lecture Notes in Computer Science, a partir da apresentação do mesmo na 41st International Conference on Current Trends in Theory and Practice of Computer Science, Pec pod Sně kou, Czech Republic, January 24-29, 2015. Proceedings | pt |
dc.format.extent | 555-565 | - |
dc.language.iso | eng | - |
dc.source | Currículo Lattes | - |
dc.subject | Data mining | en |
dc.subject | Ontology | en |
dc.subject | Context-aware | en |
dc.title | OntoSDM: an approach to improve quality on spatial data mining algorithms | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054000, SP, Brasil | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054000, SP, Brasil | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Lecture Notes in Computer Science | - |
dc.identifier.lattes | 2139053814879312 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.