Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/135791
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Papa, João Paulo | - |
dc.contributor.author | Rosa, Gustavo Henrique de | - |
dc.contributor.author | Marana, Aparecido Nilceu | - |
dc.contributor.author | Scheirer, Walter | - |
dc.contributor.author | Cox, David Daniel | - |
dc.date.accessioned | 2016-03-02T13:04:27Z | - |
dc.date.accessioned | 2016-10-25T21:33:29Z | - |
dc.date.available | 2016-03-02T13:04:27Z | - |
dc.date.available | 2016-10-25T21:33:29Z | - |
dc.date.issued | 2015 | - |
dc.identifier | http://dx.doi.org/10.1016/j.jocs.2015.04.014 | - |
dc.identifier.citation | Journal of Computational Science, v. 1, p. 1, 2015. | - |
dc.identifier.issn | 1877-7503 | - |
dc.identifier.uri | http://hdl.handle.net/11449/135791 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/135791 | - |
dc.description.abstract | Discriminative learning of Restricted Boltzmann Machines has been recently introduced as an alternative to provide a self-contained approach for both unsupervised feature learning and classification purposes. However, one of the main problems faced by researchers interested in such approach concerns with a proper selection of its parameters, which play an important role in its final performance. In this paper, we introduced some meta-heuristic techniques for this purpose, as well as we showed they can be more accurate than a random search, which is commonly used technique in several works. | en |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 14-18 | - |
dc.language.iso | eng | - |
dc.source | Currículo Lattes | - |
dc.subject | Discriminative restricted boltzmann machines | en |
dc.subject | Model selection | en |
dc.subject | Deep learning | en |
dc.title | Model selection for discriminative restricted boltzmann machines through meta-heuristic techniques | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Harvard University | - |
dc.description.affiliation | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Computação, Faculdade de Ciências de Bauru, Bauru, Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, CEP 17033-360, SP, Brasil | - |
dc.description.affiliation | Harvard University, Cambridge, MA, USA | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Computação, Faculdade de Ciências de Bauru, Bauru, Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, CEP 17033-360, SP, Brasil | - |
dc.description.sponsorshipId | FAPESP: 2013/20387-7 | - |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | - |
dc.description.sponsorshipId | CNPq: 303182/2011-3 | - |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | - |
dc.identifier.doi | 10.1016/j.jocs.2015.04.014 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Computational Science | - |
dc.identifier.lattes | 6027713750942689 | - |
dc.identifier.lattes | 9039182932747194 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.