You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/137205
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArruda Neto, João Dias de Toledo-
dc.contributor.authorRighi, Henriette-
dc.contributor.authorCascino, Marcos Antonio Gagliardi-
dc.contributor.authorGenofre, Godofredo da Camara-
dc.contributor.authorHormaza, Joel Mesa-
dc.date.accessioned2016-04-01T18:44:41Z-
dc.date.accessioned2016-10-25T21:36:49Z-
dc.date.available2016-04-01T18:44:41Z-
dc.date.available2016-10-25T21:36:49Z-
dc.date.issued2014-
dc.identifierhttp://dx.doi.org/10.4236/jamp.2014.28084-
dc.identifier.citationJournal of Applied Mathematics and Physics, v. 2, n. 8, p. 762-770, 2014.-
dc.identifier.issn2327-4352-
dc.identifier.urihttp://hdl.handle.net/11449/137205-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/137205-
dc.description.abstractA new idea on how to conceptually interpret the so-called Taylor’s power law for ecological communities is presented. The core of our approach is based on nonextensive/nonlinear statistical concepts, which are shown to be at the genesis of all power laws, particularly when a system is constituted by long-range interacting elements. In this context, the ubiquity of the Taylor’s power law is discussed and addressed by showing that long-range interactions are at the heart of the internal dynamics of populations.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent762-770-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectTaylor’s lawen
dc.subjectLong-range interactionen
dc.subjectPopulation variabilitiesen
dc.subjectEcological complexityen
dc.subjectEcological nonlinearityen
dc.titleTaylor's power law for ecological communities: an explanation on nonextensive/nonlinear statistical groundsen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionCentro Universitário Ítalo Brasileiro (UniÍtalo)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade de São Paulo (USP), Instituto de Física, São Paulo, SP, Brasil-
dc.description.affiliationCentro Universitário Ítalo Brasileiro (UniÍtalo), São Paulo, SP, Brasil-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências de Botucatu (IBB), Departamento de Física e Biofísica, Botucatu, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências de Botucatu (IBB), Departamento de Física e Biofísica, Botucatu, SP, Brasil-
dc.identifier.doi10.4236/jamp.2014.28084-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileISSN2327-4352-2014-02-08-762-770.pdf-
dc.relation.ispartofJournal of Applied Mathematics and Physics-
dc.identifier.lattes4210103622262979-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.