You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/137797
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSilva, Paulo Ricardo da [UNESP]-
dc.contributor.authorLopes, Bruno Domiciano-
dc.date.accessioned2016-04-06T18:12:12Z-
dc.date.accessioned2016-10-25T21:38:07Z-
dc.date.available2016-04-06T18:12:12Z-
dc.date.available2016-10-25T21:38:07Z-
dc.date.issued2016-03-18-
dc.identifier.urihttp://hdl.handle.net/11449/137797-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/137797-
dc.description.abstractNesta tese trabalhamos com sistemas din\^{a}micos n\~{a}o-suaves expressos por equa\c{c}\~{o}es diferenciais impl\'{i}citas descont\'{i}nuas de primeira ordem da forma \[\dot{x}=1,\quad \left (\dot{y}\right)^2=\left\{\begin{array}{lll} g_1(x,y) \quad \mbox{se}\quad \varphi(x,y)\geq0, \\ g_2(x,y) \quad \mbox{se}\quad\varphi(x,y)\leq0, \end{array}\right \] onde $g_1,g_2,\varphi:U\rightarrow\R$ s\~{a}o fun\c{c}\~{o}es suaves e $U\subseteq\R^2$ \'{e} um conjunto aberto. O principal interesse \'{e} estudar a din\^{a}mica deslizante de tais sistemas em torno de algumas singularidades t\'{i}picas. A novidade da nossa abordagem \'{e} que alguns problemas de perturba\c{c}\~{a}o singular da forma \[\dot{x}= f(x,y,\e) ,\quad (\e\dot{ y})^2=g ( x,y,\e) \] surgem quando aplicamos a regulariza\c{c}\~{a}o Sotomayor--Teixeira com $(x, y) \in U$, $\e\geq0$, e $f, g$ s\~{a}o suaves em todas as vari\'{a}veis. Para os sistemas diferenciais polinomiais c˙bicos em $\R^2$ que possuem centros, estudamos o número máximo de ciclos limites que podem bifurcar de algumas famílias de sistemas diferenciais planares polinomiais de grau 3, com integrais primeiras racionais de grau 2, quando eles são perturbados dentro da classe de todos os sistemas polinomiais diferenciais cúbicos. Obtemos um polinômio explícito cuja as raízes simples reais positivas fornecem os ciclos limites que bifurcam a partir das órbitas periódicas de qualquer sistemas diferenciais polinomiais homogêneos--ponderados que tem um centro com ( grau--ponderado, (expoente--ponderado)) (3,(1,1)), (2,(1,2)) e (3,(1,3)) quando é perturbado dentro de todas as classes de sistemas diferenciais polinomiais de grau n, 3 e 5 respectivamente.pt
dc.description.abstractIn this thesis we deal with non-smooth dynamical systems expressed by piecewise first order implicit differential equations of the form \[\dot{x}=1,\quad \left (\dot{y}\right)^2=\left\{\begin{array}{lll} g_1(x,y) \quad \mbox{if}\quad \varphi(x,y)\geq0, \\ g_2(x,y) \quad \mbox{if}\quad\varphi(x,y)\leq0, \end{array}\right. \] where $g_1,g_2,\varphi:U\rightarrow\R$ are smooth functions and $U\subseteq\R^2$ is an open set. The main concern is to study sliding modes of such systems around some typical singularities. The novelty of our approach is that some singular perturbation problems of the form \[\dot{x}= f(x,y,\e) ,\quad (\e\dot{ y})^2=g ( x,y,\e) \] arise when the Sotomayor--Teixeira regularization is applied with $(x, y) \in U$, $\e\geq0$, and $f, g$ smooth in all variables. For the cubic polynomial differential systems in $\R^2$ with centers we study the maximum number of limit cycles that bifurcate from some families of planar polynomial differential systems of degree 3 with rational first integrals of degree 2 when they are perturbed inside the classes of all cubic polynomial differential systems. We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any weight--homogeneous polynomial differential systems having centers with (weight--degree, (weight--exponent)) (3,(1,1)), (2,(1,2)) e (3,(1,3)) when it is perturbed inside the class of all polynomial differential systems of degree n, 3 and 5 respectivelyen
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.language.isopor-
dc.publisherUniversidade Estadual Paulista (UNESP)-
dc.subjectCiclos Limitept
dc.subjectCampo de Vetores Planarespt
dc.subjectCentros Isócronospt
dc.subjectMétodo do averagingpt
dc.subjectLimit cyclesen
dc.subjectPlanar Vector Fieldsen
dc.subjectIsochronous Centersen
dc.subjectAveraging methoden
dc.titleEquações diferenciais implícitas com descontinuidadept
dc.title.alternativePiecewise implicit differential systemsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.sponsorshipIdCAPES: 750013-0-
dc.rights.accessRightsAcesso aberto-
dc.identifier.aleph000868441pt
dc.identifier.capes33004153071P0-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.