You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/1405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeixeira, Daniel de Bortoli-
dc.contributor.authorPanosso, Alan Rodrigo-
dc.contributor.authorPelegrino Cerri, Carlos Eduardo-
dc.contributor.authorPereira, Gener Tadeu-
dc.contributor.authorLa Scala, Newton-
dc.date.accessioned2014-05-20T13:13:42Z-
dc.date.accessioned2016-10-25T16:34:32Z-
dc.date.available2014-05-20T13:13:42Z-
dc.date.available2016-10-25T16:34:32Z-
dc.date.issued2011-08-01-
dc.identifierhttp://dx.doi.org/10.1007/s11104-011-0770-6-
dc.identifier.citationPlant and Soil. Dordrecht: Springer, v. 345, n. 1-2, p. 187-194, 2011.-
dc.identifier.issn0032-079X-
dc.identifier.urihttp://hdl.handle.net/11449/1405-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/1405-
dc.description.abstractSoil CO2 emissions are highly variable, both spatially and across time, with significant changes even during a one-day period. The objective of this study was to compare predictions of the diurnal soil CO2 emissions in an agricultural field when estimated by ordinary kriging and sequential Gaussian simulation. The dataset consisted of 64 measurements taken in the morning and in the afternoon on bare soil in southern Brazil. The mean soil CO2 emissions were significantly different between the morning (4.54 mu mol m(-2) s(-1)) and afternoon (6.24 mu mol m(-2) s(-1)) measurements. However, the spatial variability structures were similar, as the models were spherical and had close range values of 40.1 and 40.0 m for the morning and afternoon semivariograms. In both periods, the sequential Gaussian simulation maps were more efficient for the estimations of emission than ordinary kriging. We believe that sequential Gaussian simulation can improve estimations of soil CO2 emissions in the field, as this property is usually highly non-Gaussian distributed.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent187-194-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectSoil respirationen
dc.subjectGeostatisticsen
dc.subjectordinary krigingen
dc.subjectSequential Gaussian simulationen
dc.titleSoil CO2 emission estimated by different interpolation techniquesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationUniv Estadual Paulista, FCAV UNESP, Dept Ciencias Exatas, BR-14884900 Jaboticabal, SP, Brazil-
dc.description.affiliationUniv São Paulo, ESALQ USP, Dept Ciência Solo, BR-13418900 Piracicaba, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, FCAV UNESP, Dept Ciencias Exatas, BR-14884900 Jaboticabal, SP, Brazil-
dc.identifier.doi10.1007/s11104-011-0770-6-
dc.identifier.wosWOS:000292999700014-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPlant and Soil-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.