Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/140812
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorGerhardt, Günther Johannes Lewczuk-
dc.contributor.authorLemke, Ney-
dc.contributor.authorCarvalho, Diego Zaquera-
dc.contributor.authorSanta-Helena, Emerson Luis de-
dc.contributor.authorSchönwald, Suzana Veiga-
dc.contributor.authorDellagustin, Guilherme-
dc.contributor.authorRybarczyk Filho, José Luiz-
dc.date.accessioned2016-07-07T12:35:32Z-
dc.date.accessioned2016-10-25T21:44:37Z-
dc.date.available2016-07-07T12:35:32Z-
dc.date.available2016-10-25T21:44:37Z-
dc.date.issued2014-
dc.identifierhttp://dx.doi.org/10.18226/23185279.v2iss1p15-
dc.identifier.citationScientia Cum Industria, v. 2, n. 1, p. 15-18, 2014.-
dc.identifier.issn2318-5279-
dc.identifier.urihttp://hdl.handle.net/11449/140812-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/140812-
dc.description.abstractIn this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes, with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how atom parameters such as frequency and amplitude are affected by the presence of sleep apnea.en
dc.format.extent15-18-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectEEGen
dc.subjectSignal analysisen
dc.subjectMatching pursuiten
dc.subjectObstructive apneaen
dc.subjectMachine learningen
dc.subjectDecision treeen
dc.titleAnalysis of EEG sleep spindle parameters from apnea patients using massive computing and decision treeen
dc.typeoutro-
dc.contributor.institutionUniversidade de Caxias do Sul (UCS)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do Rio Grande do Sul (UFRGS)-
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)-
dc.description.affiliationUniversidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brasil-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências (IBB), Departamento de Física e Biofísica, Botucatu, SP, Brasil-
dc.description.affiliationUniversidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil-
dc.description.affiliationUniversidade Federal de Sergipe (UFS), São Cristóvão, SE, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências (IBB), Departamento de Física e Biofísica, Botucatu, SP, Brasil-
dc.identifier.doi10.18226/23185279.v2iss1p15-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileISSN2318-5279-2014-02-01-15-18.pdf-
dc.relation.ispartofScientia Cum Industria-
dc.identifier.lattes3353201621529430-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.