You are in the accessibility menu

Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalbouisson, Jorge Mario C.-
dc.contributor.authorMessias, Andre-
dc.contributor.authorGarcia, Denny Marcos-
dc.contributor.authorCechetti, Sheila de Paula-
dc.contributor.authorBarbosa, Jose Carlos-
dc.contributor.authorVelasco Cruz, Antonio Augusto-
dc.identifier.citationJournal of Neuroscience Methods. Amsterdam: Elsevier B.V., v. 191, n. 1, p. 119-125, 2010.-
dc.description.abstractTo test a mathematical model for measuring blinking kinematics.Spontaneous and reflex blinks of 23 healthy subjects were recorded with two different temporal resolutions. A magnetic search coil was used to record 77 blinks sampled at 200 Hz and 2 kHz in 13 subjects. A video system with low temporal resolution (30 Hz) was employed to register 60 blinks of 10 other subjects. The experimental data points were fitted with a model that assumes that the upper eyelid movement can be divided into two parts: an impulsive accelerated motion followed by a damped harmonic oscillation.All spontaneous and reflex blinks, including those recorded with low resolution, were well fitted by the model with a median coefficient of determination of 0.990. No significant difference was observed when the parameters of the blinks were estimated with the under-damped or critically damped solutions of the harmonic oscillator. on the other hand, the over-damped solution was not applicable to fit any movement. There was good agreement between the model and numerical estimation of the amplitude but not of maximum velocity.Spontaneous and reflex blinks can be mathematically described as consisting of two different phases. The down-phase is mainly an accelerated movement followed by a short time that represents the initial part of the damped harmonic oscillation. The latter is entirely responsible for the up-phase of the movement. Depending on the instantaneous characteristics of each movement, the under-damped or critically damped oscillation is better suited to describe the second phase of the blink. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectHarmonic oscillationen
dc.subjectMathematical modelen
dc.titleModeling upper eyelid kinematics during spontaneous and reflex blinksen
dc.contributor.institutionUniversidade Federal da Bahia (UFBA)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal da Bahia (UFBA), Inst Phys, BR-41170290 Salvador, BA, Brazil-
dc.description.affiliationUniv São Paulo, Sch Med Ribeirao Preto, Dept Ophthalmol Otorhinolaryngol & Head & Neck Su, BR-05508 São Paulo, Brazil-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Exact Sci, São Paulo, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Exact Sci, São Paulo, Brazil-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Neuroscience Methods-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.