You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/17661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuller da Silva, Joao Paulo-
dc.contributor.authorAcencio, Marcio Luis-
dc.contributor.authorMerino Mornbach, Jose Carlos-
dc.contributor.authorVieira, Renata-
dc.contributor.authorda Silva, Jose Camargo-
dc.contributor.authorLemke, Ney-
dc.contributor.authorSinigagliac, Marialva-
dc.date.accessioned2014-05-20T13:49:32Z-
dc.date.accessioned2016-10-25T17:01:59Z-
dc.date.available2014-05-20T13:49:32Z-
dc.date.available2016-10-25T17:01:59Z-
dc.date.issued2008-02-01-
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2007.10.044-
dc.identifier.citationPhysica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 387, n. 4, p. 1049-1055, 2008.-
dc.identifier.issn0378-4371-
dc.identifier.urihttp://hdl.handle.net/11449/17661-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/17661-
dc.description.abstractThe identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance. (C) 2007 Elsevier B.V. All rights reserved.en
dc.format.extent1049-1055-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectbiological networksen
dc.subjectcomplex systemsen
dc.subjectgene essentialityen
dc.subjectmachine learningen
dc.titleIn silico network topology-based prediction of gene essentialityen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Santa Maria (UFSM)-
dc.contributor.institutionUniv Vale Rio dos Sinos-
dc.description.affiliationUNESP, Inst Biosci, Dept Phys & Biophys, BR-18618000 Botucatu, SP, Brazil-
dc.description.affiliationUniversidade Federal de Santa Maria (UFSM), Ctr Ciencias Rurais, Unipampa Sao Gabriel Posgrad Fis, BR-97105900 Santa Maria, RS, Brazil-
dc.description.affiliationUniv Vale Rio dos Sinos, Programs Interdisciplinar Computacao Aplicada, BR-93022000 Sao Leopoldo, RS, Brazil-
dc.description.affiliationUnespUNESP, Inst Biosci, Dept Phys & Biophys, BR-18618000 Botucatu, SP, Brazil-
dc.identifier.doi10.1016/j.physa.2007.10.044-
dc.identifier.wosWOS:000252613300029-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.