You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/214
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimões, Alexandre da Silva-
dc.contributor.authorReali Costa, Anna Helena-
dc.contributor.authorZaverucha, G-
dc.contributor.authorLoureiroDaCosta, A-
dc.date.accessioned2014-05-20T13:12:14Z-
dc.date.accessioned2016-10-25T16:32:37Z-
dc.date.available2014-05-20T13:12:14Z-
dc.date.available2016-10-25T16:32:37Z-
dc.date.issued2008-01-01-
dc.identifierhttp://dx.doi.org/10.1007/978-3-540-88190-2_28-
dc.identifier.citationAdvances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008.-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/11449/214-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/214-
dc.description.abstractSpiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.en
dc.format.extent227-236-
dc.language.isoeng-
dc.publisherSpringer-verlag Berlin-
dc.sourceWeb of Science-
dc.titleA Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Functionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSão Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, Brazil-
dc.description.affiliationUnespSão Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, Brazil-
dc.identifier.doi10.1007/978-3-540-88190-2_28-
dc.identifier.wosWOS:000261373200028-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofAdvances In Artificial Intelligence - Sbia 2008, Proceedings-
dc.identifier.scopus2-s2.0-57049154145-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.