Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/214
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Simões, Alexandre da Silva | - |
dc.contributor.author | Reali Costa, Anna Helena | - |
dc.contributor.author | Zaverucha, G | - |
dc.contributor.author | LoureiroDaCosta, A | - |
dc.date.accessioned | 2014-05-20T13:12:14Z | - |
dc.date.accessioned | 2016-10-25T16:32:37Z | - |
dc.date.available | 2014-05-20T13:12:14Z | - |
dc.date.available | 2016-10-25T16:32:37Z | - |
dc.date.issued | 2008-01-01 | - |
dc.identifier | http://dx.doi.org/10.1007/978-3-540-88190-2_28 | - |
dc.identifier.citation | Advances In Artificial Intelligence - Sbia 2008, Proceedings. Berlin: Springer-verlag Berlin, v. 5249, p. 227-236, 2008. | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/11449/214 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/214 | - |
dc.description.abstract | Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor. | en |
dc.format.extent | 227-236 | - |
dc.language.iso | eng | - |
dc.publisher | Springer-verlag Berlin | - |
dc.source | Web of Science | - |
dc.title | A Learning Function for Parameter Reduction in Spiking Neural Networks with Radial Basis Function | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | São Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, Brazil | - |
dc.description.affiliationUnesp | São Paulo State Univ UNESP, Automat & Integrated Syst Grp, BR-18087180 Sorocaba, SP, Brazil | - |
dc.identifier.doi | 10.1007/978-3-540-88190-2_28 | - |
dc.identifier.wos | WOS:000261373200028 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Advances In Artificial Intelligence - Sbia 2008, Proceedings | - |
dc.identifier.scopus | 2-s2.0-57049154145 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.