You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21717
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArea, I-
dc.contributor.authorDimitrov, D. K.-
dc.contributor.authorGodoy, E.-
dc.contributor.authorRonveaux, A.-
dc.date.accessioned2014-05-20T14:01:32Z-
dc.date.available2014-05-20T14:01:32Z-
dc.date.issued2006-04-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cam.2005.03.055-
dc.identifier.citationJournal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 188, n. 1, p. 65-76, 2006.-
dc.identifier.issn0377-0427-
dc.identifier.urihttp://hdl.handle.net/11449/21717-
dc.description.abstractThe number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.en
dc.format.extent65-76-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectJacobi functions of second kindpt
dc.subjectzerospt
dc.subjectJacobi polynomialspt
dc.subjectinterlacing properties of zerospt
dc.subjectLaguerre and Hermite functions of second kindpt
dc.titleZeros of Jacobi functions of second kinden
dc.typeoutro-
dc.contributor.institutionUniv Vigo-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Catholique Louvain-
dc.description.affiliationUniv Vigo, ETSE Telecommun, Dept Matemat Aplicada 2, Vigo 36200, Spain-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Vigo, ETSI Ind, Dept Matemat Aplicada 2, Vigo 36200, Spain-
dc.description.affiliationUniv Catholique Louvain, Dept Math, Unite Anal Math & Mecan, B-1348 Louvain, Belgium-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Ciências Computacao & Estatist, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.identifier.doi10.1016/j.cam.2005.03.055-
dc.identifier.wosWOS:000234789100005-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000234789100005.pdf-
dc.relation.ispartofJournal of Computational and Applied Mathematics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.