You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21719
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlves, CRR-
dc.contributor.authorDimitrov, D. K.-
dc.date.accessioned2014-05-20T14:01:33Z-
dc.date.available2014-05-20T14:01:33Z-
dc.date.issued1999-01-01-
dc.identifierhttp://dx.doi.org/10.1155/S1025583499000430-
dc.identifier.citationJournal of Inequalities and Applications. Reading: Gordon Breach Sci Publ Ltd, v. 4, n. 4, p. 327-338, 1999.-
dc.identifier.issn1025-5834-
dc.identifier.urihttp://hdl.handle.net/11449/21719-
dc.description.abstractLet 0<j<m less than or equal to n be integers. Denote by parallel to . parallel to the norm parallel to f parallel to(2) = integral(-infinity)(infinity) f(2)(x) exp(-x(2)) dx. For various positive values of A and B we establish Kolmogoroff type inequalitiesparallel to f((f))parallel to(2) less than or equal to A parallel to f(m)parallel to + B parallel to f parallel to/ A theta(k) + B mu(k),with certain constants theta(k)e mu(k), which hold for every f is an element of pi(n) (pi(n) denotes the space of real algebraic polynomials of degree not exceeding n).For the particular case j=1 and m=2, we provide a complete characterisation of the positive constants A and B, for which the corresponding Landau type polynomial inequalities parallel to f'parallel to less than or equal toA parallel to f parallel to + B parallel to f parallel to/ A theta(k) + B mu(k)hold. In each case we determine the corresponding extremal polynomials for which equalities are attained.en
dc.format.extent327-338-
dc.language.isoeng-
dc.publisherGordon Breach Sci Publ Ltd-
dc.sourceWeb of Science-
dc.subjectLandau and Kolmogoroff type inequalitiespt
dc.subjectMarkov's inequalitypt
dc.subjecthermite polynomialspt
dc.subjectextremal polynomialspt
dc.subjectRayleigh-Ritz theorempt
dc.titleLandau and Kolmogoroff type polynomial inequalitiesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, Dept Ciências Comp & Estatist, IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciências Comp & Estatist, IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.identifier.doi10.1155/S1025583499000430-
dc.identifier.wosWOS:000083720600004-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000083720600004.pdf-
dc.relation.ispartofJournal of Inequalities and Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.