You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21753
Title: 
Monotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomials
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Carlos III
  • Universidade Estadual de Campinas (UNICAMP)
ISSN: 
0022-247X
Sponsorship: 
  • Direccion General de Investigacion, Ministerio de Educacion y Ciência of Spain
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Comunidad de Madrid-Universidad Carlos III de Madrid
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
  • Direccion General de Investigacion, Ministerio de Educacion y Ciência of Spain: MTM06-13000-C03-02
  • CAPES: DGU 160/08
  • Comunidad de Madrid-Universidad Carlos III de Madrid: CCG07-UC3M/ESP-3339
  • CNPq: 304830/2006-2
  • FAPESP: 03/01874-2
  • FAPESP: 07/02854-6
Abstract: 
Denote by x(n,k)(M,N)(alpha), k = 1, ..., n, the zeros of the Laguerre-Sobolev-type polynomials L(n)((alpha, M, N))(x) orthogonal with respect to the inner product< p, q > = 1/Gamma(alpha + 1) integral(infinity)(0)p(x)q(x)x(alpha)e(-x) dx + Mp(0)q(0) + Np'(0)q'(0),where alpha > -1, M >= 0 and N >= 0. We prove that x(n,k)(M,N)(alpha) interlace with the zeros of Laguerre orthogonal polynomials L(n)((alpha))(x) and establish monotonicity with respect to the parameters M and N of x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). Moreover, we find N(0) such that x(n,n)(M,N)(alpha) < 0 for all N > N(0), where x(n,n)(M,N)(alpha) is the smallest zero of L(n)((alpha, M, N))(x). Further, we present monotonicity and asymptotic relations of certain functions involving x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). (C) 2010 Elsevier B.V. All rights reserved.
Issue Date: 
1-Aug-2010
Citation: 
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 368, n. 1, p. 80-89, 2010.
Time Duration: 
80-89
Publisher: 
Academic Press Inc. Elsevier B.V.
Keywords: 
  • Orthogonal polynomials
  • Laguerre polynomial
  • Sobolev-type orthogonal polynomials
  • Zeros
  • Monotonicity
  • Asymptotic
Source: 
http://dx.doi.org/10.1016/j.jmaa.2010.02.038
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/21753
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.