You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21753
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDimitrov, Dimitar Kolev-
dc.contributor.authorMarcellan, Francisco-
dc.contributor.authorRafaeli, Fernando R.-
dc.date.accessioned2014-05-20T14:01:38Z-
dc.date.accessioned2016-10-25T17:08:41Z-
dc.date.available2014-05-20T14:01:38Z-
dc.date.available2016-10-25T17:08:41Z-
dc.date.issued2010-08-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2010.02.038-
dc.identifier.citationJournal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 368, n. 1, p. 80-89, 2010.-
dc.identifier.issn0022-247X-
dc.identifier.urihttp://hdl.handle.net/11449/21753-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21753-
dc.description.abstractDenote by x(n,k)(M,N)(alpha), k = 1, ..., n, the zeros of the Laguerre-Sobolev-type polynomials L(n)((alpha, M, N))(x) orthogonal with respect to the inner product< p, q > = 1/Gamma(alpha + 1) integral(infinity)(0)p(x)q(x)x(alpha)e(-x) dx + Mp(0)q(0) + Np'(0)q'(0),where alpha > -1, M >= 0 and N >= 0. We prove that x(n,k)(M,N)(alpha) interlace with the zeros of Laguerre orthogonal polynomials L(n)((alpha))(x) and establish monotonicity with respect to the parameters M and N of x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). Moreover, we find N(0) such that x(n,n)(M,N)(alpha) < 0 for all N > N(0), where x(n,n)(M,N)(alpha) is the smallest zero of L(n)((alpha, M, N))(x). Further, we present monotonicity and asymptotic relations of certain functions involving x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipDireccion General de Investigacion, Ministerio de Educacion y Ciência of Spain-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipComunidad de Madrid-Universidad Carlos III de Madrid-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent80-89-
dc.language.isoeng-
dc.publisherAcademic Press Inc. Elsevier B.V.-
dc.sourceWeb of Science-
dc.subjectOrthogonal polynomialsen
dc.subjectLaguerre polynomialen
dc.subjectSobolev-type orthogonal polynomialsen
dc.subjectZerosen
dc.subjectMonotonicityen
dc.subjectAsymptoticen
dc.titleMonotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomialsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Carlos III-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Ciencias Comp & Estatist, São Paulo, Brazil-
dc.description.affiliationUniv Carlos III, Escuela Politecn Super, Dept Matemat, Leganes, Spain-
dc.description.affiliationUniv Estadual Campinas, Inst Matemat Estatist & Comp, BR-13081970 Campinas, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Ciencias Comp & Estatist, São Paulo, Brazil-
dc.description.sponsorshipIdDireccion General de Investigacion, Ministerio de Educacion y Ciência of Spain: MTM06-13000-C03-02-
dc.description.sponsorshipIdCAPES: DGU 160/08-
dc.description.sponsorshipIdComunidad de Madrid-Universidad Carlos III de Madrid: CCG07-UC3M/ESP-3339-
dc.description.sponsorshipIdCNPq: 304830/2006-2-
dc.description.sponsorshipIdFAPESP: 03/01874-2-
dc.description.sponsorshipIdFAPESP: 07/02854-6-
dc.identifier.doi10.1016/j.jmaa.2010.02.038-
dc.identifier.wosWOS:000276926800008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Mathematical Analysis and Applications-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.