You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDimitrov, Dimitar Kolev-
dc.contributor.authorKostov, Vladimir P.-
dc.date.accessioned2014-05-20T14:01:41Z-
dc.date.accessioned2016-10-25T17:08:42Z-
dc.date.available2014-05-20T14:01:41Z-
dc.date.available2016-10-25T17:08:42Z-
dc.date.issued2012-07-01-
dc.identifierhttp://dx.doi.org/10.1007/s13163-011-0078-3-
dc.identifier.citationRevista Matematica Complutense. New York: Springer, v. 25, n. 2, p. 475-491, 2012.-
dc.identifier.issn1139-1138-
dc.identifier.urihttp://hdl.handle.net/11449/21767-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21767-
dc.description.abstractFor any pair of algebraic polynomials A(x) = Sigma(n)(k=0) ((n)(k))a(k)x(k) and B(x) = Sigma(n)(k=0) ((n)(k))b(k)x(k), their Schur-Szego composition is defined by (A (*)(n) B)(x) = Sigma(n)(k=0) ((n)(k))a(k)b(k)x(k). Motivated by some recent results which show that every polynomial P(x) of degree n with P(-1) = 0 can be represented as K-a1 (*)(n) ... (*)(n) Kan-1 with K-a := (x + 1)(n-1) (x + a), we introduce the notion of Schur-Szego composition of formal power series and study its properties in the case when the series represents an entire function. We also concentrate on the special case of composition of functions of the form e(x) P(x), where P(x) is an algebraic polynomial and investigate its properties in detail.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCentre national de la recherche scientifique (CNRS)-
dc.format.extent475-491-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectSchur-Szego compositionen
dc.subjectEntire functionsen
dc.subjectHyperbolic polynomialsen
dc.subjectLaguerre-Polya classen
dc.titleSchur-SzegA composition of entire functionsen
dc.typeoutro-
dc.contributor.institutionUniv Nice-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Nice, Math Lab, F-06108 Nice 2, France-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 09/13832-9-
dc.description.sponsorshipIdCNPq: 305622/2009-9-
dc.description.sponsorshipIdFrench Foundation CNRS: 20682-
dc.identifier.doi10.1007/s13163-011-0078-3-
dc.identifier.wosWOS:000305478800007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofRevista Matematica Complutense-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.