You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21770
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLitvinchev, I.-
dc.contributor.authorMata, M.-
dc.contributor.authorRangel, J.-
dc.date.accessioned2014-05-20T14:01:41Z-
dc.date.accessioned2016-10-25T17:08:43Z-
dc.date.available2014-05-20T14:01:41Z-
dc.date.available2016-10-25T17:08:43Z-
dc.date.issued2010-12-01-
dc.identifierhttp://dx.doi.org/10.1134/S1064230710060109-
dc.identifier.citationJournal of Computer and Systems Sciences International. New York: Maik Nauka/interperiodica/springer, v. 49, n. 6, p. 915-922, 2010.-
dc.identifier.issn1064-2307-
dc.identifier.urihttp://hdl.handle.net/11449/21770-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21770-
dc.description.abstractThere are often many ways in which a given problem can be relaxed in a Lagrangian fashion. It is not obvious a priori, which relaxation produces the best bound. Moreover, a bound may appear to be the best for a certain data set, while being among the worst for another problem instance. We consider here an optimization problem over the set of Lagrangian relaxations with the objective to indicate the relaxation producing the best dual bound. An iterative technique to solve this problem is proposed based on constraints generation scheme. The approach is illustrated by a computational study for a class of the two-stage capacitated facility location problem.en
dc.description.sponsorshipRussian Foundation for Basic Research (RFBR)-
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (CONACYT)-
dc.description.sponsorshipMexican foundation PROMEP-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent915-922-
dc.language.isoeng-
dc.publisherMaik Nauka/interperiodica/springer-
dc.sourceWeb of Science-
dc.titleCalculating the Best Dual Bound for Problems with Multiple Lagrangian Relaxationsen
dc.typeoutro-
dc.contributor.institutionRussian Acad Sci-
dc.contributor.institutionUANL-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationRussian Acad Sci, Ctr Comp, Moscow 117901, Russia-
dc.description.affiliationUANL, Fac Mech & Elect Engn, Mexico City, DF, Mexico-
dc.description.affiliationUNESP, Dept Comp Sci & Stat, Sao Jose do Rio Preto, Brazil-
dc.description.affiliationUnespUNESP, Dept Comp Sci & Stat, Sao Jose do Rio Preto, Brazil-
dc.description.sponsorshipIdRFBR: 09-01-00592-
dc.description.sponsorshipIdMexican foundation CONACyT: 61343-
dc.description.sponsorshipIdMexican foundation PROMEP: 103.5/09/3905-
dc.description.sponsorshipIdMexican foundation PROMEP: 4935-
dc.identifier.doi10.1134/S1064230710060109-
dc.identifier.wosWOS:000288162200010-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Computer and Systems Sciences International-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.