You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRoman-Flores, H.-
dc.contributor.authorChalco-Cano, Y.-
dc.contributor.authorSilva, Geraldo Nunes-
dc.contributor.authorKupka, Jiri-
dc.date.accessioned2014-05-20T14:01:41Z-
dc.date.accessioned2016-10-25T17:08:43Z-
dc.date.available2014-05-20T14:01:41Z-
dc.date.available2016-10-25T17:08:43Z-
dc.date.issued2011-11-01-
dc.identifierhttp://dx.doi.org/10.1016/j.chaos.2011.08.004-
dc.identifier.citationChaos Solitons & Fractals. Oxford: Pergamon-Elsevier B.V. Ltd, v. 44, n. 11, p. 990-994, 2011.-
dc.identifier.issn0960-0779-
dc.identifier.urihttp://hdl.handle.net/11449/21771-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21771-
dc.description.abstractLet (X,d) be a compact metric space and f: X -> X a continuous function. Consider the hyperspace (K(X), H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d, and let (T(X), d(infinity)) be the metric space of all nonempty compact fuzzy set on X equipped with the supremum metric d(infinity) which is calculated as the supremum of the Hausdorff distances of the corresponding level sets. If (f) over bar is the natural extension off to (K(X), H) and f is the Zadeh's extension of f to (F(X), d(infinity)), then the aim of this paper is to study the dynamics of (f) over bar and (f) over cap when! is turbulent (erratic, respectively). (C) 2011 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipConicyt-Chile through Fondecyt-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipMinistry of Education of the Czech Republic-
dc.format.extent990-994-
dc.language.isoeng-
dc.publisherPergamon-Elsevier B.V. Ltd-
dc.sourceWeb of Science-
dc.titleOn turbulent, erratic and other dynamical properties of Zadeh's extensionsen
dc.typeoutro-
dc.contributor.institutionUniv Tarapaca-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Ostrava-
dc.description.affiliationUniv Tarapaca, Inst Alta Invest, Arica, Chile-
dc.description.affiliationUniv Estadual Paulista, Dept Ciência Computacao & Estat, Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Ostrava, Inst Res & Applicat Fuzzy Modeling, Ostrava 70133, Czech Republic-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciência Computacao & Estat, Sao Jose do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdConicyt-Chile through Fondecyt: 1080438-
dc.description.sponsorshipIdFAPESP: 09/18643-0-
dc.description.sponsorshipIdCNPq: 305418/2009-2-
dc.description.sponsorshipIdMinistry of Education of the Czech Republic: MSM 6198898701-
dc.identifier.doi10.1016/j.chaos.2011.08.004-
dc.identifier.wosWOS:000297494400011-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofChaos Solitons & Fractals-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.