You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21778
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArea, Ivan-
dc.contributor.authorDimitrov, Dimitar Kolev-
dc.contributor.authorGodoy, Eduardo-
dc.date.accessioned2014-05-20T14:01:42Z-
dc.date.accessioned2016-10-25T17:08:43Z-
dc.date.available2014-05-20T14:01:42Z-
dc.date.available2016-10-25T17:08:43Z-
dc.date.issued2011-07-01-
dc.identifierhttp://dx.doi.org/10.1016/j.apnum.2011.02.004-
dc.identifier.citationApplied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 61, n. 7, p. 868-878, 2011.-
dc.identifier.issn0168-9274-
dc.identifier.urihttp://hdl.handle.net/11449/21778-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21778-
dc.description.abstractIn an attempt to answer a long standing open question of Al-Salam we generate various beautiful formulae for convolutions of orthogonal polynomials similar toU(n)(x) = Sigma(n)(k=0) P(k)(x)P(n-k)(x).where U(n)(x) are the Chebyshev polynomials of the second kind and P(k)(x) are the Legendre polynomials. The results are derived both via the generating functions approach and a new convolution formulae for hypergeometric functions. We apply some addition formulae similar to the well-known expansionH(n)(x + Y) = 2(-n/2) Sigma(n)(k=0) (n k) H(k)(root 2x) H(n-k)(root 2y)for the Hermite polynomials, due to Appell and Kampe de Feriet, to obtain new interesting inequalities about the zeros of the corresponding orthogonal polynomials. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipMCT of Spain-
dc.description.sponsorshipEuropean Community-
dc.format.extent868-878-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectOrthogonal polynomialsen
dc.subjectConvolutionen
dc.subjectGenerating functionen
dc.subjectZerosen
dc.titleConvolutions and zeros of orthogonal polynomialsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Vigo-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Vigo, ETSE Telecomunicac, Dept Matemat Aplicada 2, Vigo 36200, Spain-
dc.description.affiliationUniv Vigo, ETSI Ind, Dept Matemat Aplicada 2, Vigo 36200, Spain-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdCAPES: 160/08 and PHB2007-0078-
dc.description.sponsorshipIdCNPq: 305622/2009-9-
dc.description.sponsorshipIdFAPESP: 09/13832-9-
dc.description.sponsorshipIdMCT of Spain: MTM2006-07186-
dc.description.sponsorshipIdMCT of Spain: MTM2009-14668-C02-01-
dc.identifier.doi10.1016/j.apnum.2011.02.004-
dc.identifier.wosWOS:000290281700005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofApplied Numerical Mathematics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.