You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21795
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartins, A. S.-
dc.contributor.authorNeves, L. A.-
dc.contributor.authorNascimento, M. Z.-
dc.contributor.authorGodoy, M. F.-
dc.contributor.authorFlores, E. L.-
dc.contributor.authorCarrijo, G. A.-
dc.date.accessioned2014-05-20T14:01:45Z-
dc.date.accessioned2016-10-25T17:08:45Z-
dc.date.available2014-05-20T14:01:45Z-
dc.date.available2016-10-25T17:08:45Z-
dc.date.issued2012-06-01-
dc.identifierhttp://dx.doi.org/10.1109/TLA.2012.6272486-
dc.identifier.citationIEEE Latin America Transactions. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 10, n. 4, p. 1999-2005, 2012.-
dc.identifier.issn1548-0992-
dc.identifier.urihttp://hdl.handle.net/11449/21795-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21795-
dc.description.abstractComputer systems are used to support breast cancer diagnosis, with decisions taken from measurements carried out in regions of interest (ROIs). We show that support decisions obtained from square or rectangular ROIs can to include background regions with different behavior of healthy or diseased tissues. In this study, the background regions were identified as Partial Pixels (PP), obtained with a multilevel method of segmentation based on maximum entropy. The behaviors of healthy, diseased and partial tissues were quantified by fractal dimension and multiscale lacunarity, calculated through signatures of textures. The separability of groups was achieved using a polynomial classifier. The polynomials have powerful approximation properties as classifiers to treat characteristics linearly separable or not. This proposed method allowed quantifying the ROIs investigated and demonstrated that different behaviors are obtained, with distinctions of 90% for images obtained in the Cranio-caudal (CC) and Mediolateral Oblique (MLO) views.en
dc.format.extent1999-2005-
dc.language.isopor-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectMammographyen
dc.subjectRegions of Interesten
dc.subjectPartial Pixelsen
dc.subjectFractal Descriptorsen
dc.subjectPolynomial Classifieren
dc.titleMultiscale Fractal Descriptors and Polynomial Classifier for Partial Pixels Identification in Regions of Interest of Mammographic Imagesen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionIFTM-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.contributor.institutionFaculdade de Medicina de São José do Rio Preto (FAMERP)-
dc.description.affiliationUniversidade Federal de Uberlândia (UFU), Uberlandia, MG, Brazil-
dc.description.affiliationIFTM, Ituiutaba, MG, Brazil-
dc.description.affiliationUniv Estadual Paulista UNESP, DCCE, São Paulo, Brazil-
dc.description.affiliationUFABC, Ctr Matemat Comp & Cognicao, São Paulo, Brazil-
dc.description.affiliationFaculdade de Medicina de São José do Rio Preto (FAMERP) FAMERP, Dept Cardiol & Cirurgia Cardiovasc, São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, DCCE, São Paulo, Brazil-
dc.identifier.doi10.1109/TLA.2012.6272486-
dc.identifier.wosWOS:000311854600021-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Latin America Transactions-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.