Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/21806
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Costa, Marisa S. | - |
dc.contributor.author | Godoy, Eduardo | - |
dc.contributor.author | Lamblem, Regina L. | - |
dc.contributor.author | Sri Ranga, A. | - |
dc.date.accessioned | 2014-05-20T14:01:47Z | - |
dc.date.available | 2014-05-20T14:01:47Z | - |
dc.date.issued | 2012-06-01 | - |
dc.identifier | http://dx.doi.org/10.1090/S0002-9939-2011-11066-9 | - |
dc.identifier.citation | Proceedings of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 140, n. 6, p. 2075-2089, 2012. | - |
dc.identifier.issn | 0002-9939 | - |
dc.identifier.uri | http://hdl.handle.net/11449/21806 | - |
dc.description.abstract | A three-complex-parameter class of orthogonal Laurent polynomials on the unit circle associated with basic hypergeometric or q-hypergeometric functions is considered. To be precise, we consider the orthogonality properties of the sequence of polynomials {(2)Phi(1)(q(-n), q(b+1); q(-c+b-n); q,q(-c+d-1)z)}(n=0)(infinity), where 0 < q < 1 and the complex parameters b, c and d are such that b not equal -1, -2, ... , c - b + 1 not equal -1, -2, ... , Re(d) > 0 and Re(c - d + 2) > 0. Explicit expressions for the recurrence coefficients, moments, orthogonality and also asymptotic properties are given. By a special choice of the parameters, results regarding a class of Szego polynomials are also derived. | en |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.description.sponsorship | European Community | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 2075-2089 | - |
dc.language.iso | eng | - |
dc.publisher | Amer Mathematical Soc | - |
dc.source | Web of Science | - |
dc.subject | Basic hypergeometric functions | en |
dc.subject | Continued fractions | en |
dc.subject | Orthogonal Laurent polynomials | en |
dc.subject | Szegö polynomials | en |
dc.title | BASIC HYPERGEOMETRIC FUNCTIONS and ORTHOGONAL LAURENT POLYNOMIALS | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Univ Vigo | - |
dc.description.affiliation | Univ Estadual Paulista, UNESP, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | - |
dc.description.affiliation | Univ Vigo, Dept Matemat Aplicada 2, ETSI Ind, Vigo 36310, Spain | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP, IBILCE, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | - |
dc.identifier.doi | 10.1090/S0002-9939-2011-11066-9 | - |
dc.identifier.wos | WOS:000303970700022 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | WOS000303970700022.pdf | - |
dc.relation.ispartof | Proceedings of the American Mathematical Society | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.