You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Andrade, Eliana X. L.-
dc.contributor.authorBracciali, Cleonice Fátima-
dc.contributor.authorCastano-Garcia, Laura-
dc.contributor.authorMoreno-Balcazar, Juan J.-
dc.date.accessioned2014-05-20T14:01:49Z-
dc.date.accessioned2016-10-25T17:08:47Z-
dc.date.available2014-05-20T14:01:49Z-
dc.date.available2016-10-25T17:08:47Z-
dc.date.issued2010-11-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2010.05.003-
dc.identifier.citationJournal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 162, n. 11, p. 1945-1963, 2010.-
dc.identifier.issn0021-9045-
dc.identifier.urihttp://hdl.handle.net/11449/21816-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/21816-
dc.description.abstractWe consider the Sobolev inner product< f, g > = integral(1)(-1)f(x)g(x)d psi((alpha,beta))(x) + integral f'(x)g'(x)d psi(x),where d psi((alpha,beta))(x) = (1 = x)(alpha)(1 + x)(beta)dx with alpha, beta > -1, and psi is a measure involving a rational modification of a Jacobi weight and with a mass point outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product on different regions of the complex plane. In fact, we obtain the outer and inner strong asymptotics for these polynomials as well as the Mehler-Heine asymptotics which allow us to obtain the asymptotics of the largest zeros of these polynomials. We also show that in a certain sense the above inner product is also equilibrated. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipMICINN of Spain-
dc.description.sponsorshipJunta de Andalucia-
dc.format.extent1945-1963-
dc.language.isoeng-
dc.publisherAcademic Press Inc. Elsevier B.V.-
dc.sourceWeb of Science-
dc.subjectOrthogonal polynomialsen
dc.subjectSobolev orthogonal polynomialsen
dc.subjectAsymptoticen
dc.titleAsymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measuresen
dc.typeoutro-
dc.contributor.institutionUniv Almeria-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Almeria, Dpto Estadist & Matemat Aplicada, Almeria 04120, Spain-
dc.description.affiliationUniv Estadual Paulista, UNESP, IBILCE, DCCE, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, IBILCE, DCCE, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdMICINN of Spain: MTM2008-06689-C02-01-
dc.description.sponsorshipIdJunta de Andalucia: FQM229-
dc.description.sponsorshipIdJunta de Andalucia: P06-FQM-1735-
dc.identifier.doi10.1016/j.jat.2010.05.003-
dc.identifier.wosWOS:000284569700003-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Approximation Theory-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.