You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22141
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarrillo, Jose A.-
dc.contributor.authorFerreira, Lucas C. F.-
dc.contributor.authorPrecioso, Juliana C.-
dc.date.accessioned2014-05-20T14:02:51Z-
dc.date.accessioned2016-10-25T17:09:21Z-
dc.date.available2014-05-20T14:02:51Z-
dc.date.available2016-10-25T17:09:21Z-
dc.date.issued2012-09-10-
dc.identifierhttp://dx.doi.org/10.1016/j.aim.2012.03.036-
dc.identifier.citationAdvances In Mathematics. San Diego: Academic Press Inc. Elsevier B.V., v. 231, n. 1, p. 306-327, 2012.-
dc.identifier.issn0001-8708-
dc.identifier.urihttp://hdl.handle.net/11449/22141-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/22141-
dc.description.abstractWe consider a one dimensional transport model with nonlocal velocity given by the Hilbert transform and develop a global well-posedness theory of probability measure solutions. Both the viscous and non-viscous cases are analyzed. Both in original and in self-similar variables, we express the corresponding equations as gradient flows with respect to a free energy functional including a singular logarithmic interaction potential. Existence, uniqueness, self-similar asymptotic behavior and inviscid limit of solutions are obtained in the space P-2(R) of probability measures with finite second moments, without any smallness condition. Our results arc based on the abstract gradient flow theory developed by Ambrosio et al. (2005) [2]. An important byproduct of our results is that there is a unique, up to invariance and translations, global in time self-similar solution with initial data in P-2(R), which was already obtained by Deslippe etal. (2004) [17] and Biler et al. (2010) [6] by different methods. Moreover, this self-similar solution attracts all the dynamics in self-similar variables. The crucial monotonicity property of the transport between measures in one dimension allows to show that the singular logarithmic potential energy is displacement convex. We also extend the results to gradient flow equations with negative power-law locally integrable interaction potentials. (C) 2012 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipMinisterio de Ciência e Innovacion-
dc.description.sponsorshipAgencia de Gestio d'Ajuts Universitaris i de Recerca-Generalitat de Catalunya-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent306-327-
dc.language.isoeng-
dc.publisherAcademic Press Inc. Elsevier B.V.-
dc.sourceWeb of Science-
dc.subjectGradients flowsen
dc.subjectOptimal transporten
dc.subjectAsymptotic behavioren
dc.subjectInviscid limiten
dc.titleA mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocityen
dc.typeoutro-
dc.contributor.institutionUniv Autonoma Barcelona-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Autonoma Barcelona, ICREA, Bellaterra 08193, Barcelona, Spain-
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain-
dc.description.affiliationUniv Estadual Campinas, IMECC, Dept Matemat, BR-13083859 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdMICINN: MTM2011-27739-C04-02-
dc.description.sponsorshipIdAgencia de Gestio d'Ajuts Universitaris i de Recerca-Generalitat de Catalunya: 2009-SGR-345-
dc.description.sponsorshipIdCAPES: BEX2872/05-6-
dc.identifier.doi10.1016/j.aim.2012.03.036-
dc.identifier.wosWOS:000306145800009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofAdvances in Mathematics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.