Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/22155- Título:
- An Extension of Craig's Family of Lattices
- Universidade Federal de Alagoas (UFAL)
- San Diego State Univ
- Universidade Estadual Paulista (UNESP)
- 0008-4395
- Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.
- 1-Dez-2011
- Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques. Ottawa: Canadian Mathematical Soc, v. 54, n. 4, p. 645-653, 2011.
- 645-653
- Canadian Mathematical Soc
- geometry of numbers
- lattice packing
- Craig's lattices
- Quadratic form
- Cyclotomic fields
- http://dx.doi.org/10.4153/CMB-2011-038-7
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/22155
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.
