Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/22155
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Flores, Andre Luiz | - |
dc.contributor.author | Interlando, J. Carmelo | - |
dc.contributor.author | da Nobrega Neto, Trajano Pires | - |
dc.date.accessioned | 2014-05-20T14:02:53Z | - |
dc.date.accessioned | 2016-10-25T17:09:23Z | - |
dc.date.available | 2014-05-20T14:02:53Z | - |
dc.date.available | 2016-10-25T17:09:23Z | - |
dc.date.issued | 2011-12-01 | - |
dc.identifier | http://dx.doi.org/10.4153/CMB-2011-038-7 | - |
dc.identifier.citation | Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques. Ottawa: Canadian Mathematical Soc, v. 54, n. 4, p. 645-653, 2011. | - |
dc.identifier.issn | 0008-4395 | - |
dc.identifier.uri | http://hdl.handle.net/11449/22155 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/22155 | - |
dc.description.abstract | Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties. | en |
dc.format.extent | 645-653 | - |
dc.language.iso | eng | - |
dc.publisher | Canadian Mathematical Soc | - |
dc.source | Web of Science | - |
dc.subject | geometry of numbers | en |
dc.subject | lattice packing | en |
dc.subject | Craig's lattices | en |
dc.subject | Quadratic form | en |
dc.subject | Cyclotomic fields | en |
dc.title | An Extension of Craig's Family of Lattices | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal de Alagoas (UFAL) | - |
dc.contributor.institution | San Diego State Univ | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Federal de Alagoas (UFAL), Dept Matemat, Arapiraca, AL, Brazil | - |
dc.description.affiliation | San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA | - |
dc.description.affiliation | Univ Estadual Paulista, Dept Matemat, Sao Jose do Rio Preto, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Matemat, Sao Jose do Rio Preto, SP, Brazil | - |
dc.identifier.doi | 10.4153/CMB-2011-038-7 | - |
dc.identifier.wos | WOS:000297379700007 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.