You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFlores, Andre Luiz-
dc.contributor.authorInterlando, J. Carmelo-
dc.contributor.authorda Nobrega Neto, Trajano Pires-
dc.date.accessioned2014-05-20T14:02:53Z-
dc.date.accessioned2016-10-25T17:09:23Z-
dc.date.available2014-05-20T14:02:53Z-
dc.date.available2016-10-25T17:09:23Z-
dc.date.issued2011-12-01-
dc.identifierhttp://dx.doi.org/10.4153/CMB-2011-038-7-
dc.identifier.citationCanadian Mathematical Bulletin-bulletin Canadien de Mathematiques. Ottawa: Canadian Mathematical Soc, v. 54, n. 4, p. 645-653, 2011.-
dc.identifier.issn0008-4395-
dc.identifier.urihttp://hdl.handle.net/11449/22155-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/22155-
dc.description.abstractLet p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.en
dc.format.extent645-653-
dc.language.isoeng-
dc.publisherCanadian Mathematical Soc-
dc.sourceWeb of Science-
dc.subjectgeometry of numbersen
dc.subjectlattice packingen
dc.subjectCraig's latticesen
dc.subjectQuadratic formen
dc.subjectCyclotomic fieldsen
dc.titleAn Extension of Craig's Family of Latticesen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Alagoas (UFAL)-
dc.contributor.institutionSan Diego State Univ-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Federal de Alagoas (UFAL), Dept Matemat, Arapiraca, AL, Brazil-
dc.description.affiliationSan Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA-
dc.description.affiliationUniv Estadual Paulista, Dept Matemat, Sao Jose do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat, Sao Jose do Rio Preto, SP, Brazil-
dc.identifier.doi10.4153/CMB-2011-038-7-
dc.identifier.wosWOS:000297379700007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofCanadian Mathematical Bulletin-bulletin Canadien de Mathematiques-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.