Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/22158
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gatto, Letterio | - |
dc.contributor.author | Salehyan, Parham | - |
dc.date.accessioned | 2014-05-20T14:02:53Z | - |
dc.date.accessioned | 2016-10-25T17:09:23Z | - |
dc.date.available | 2014-05-20T14:02:53Z | - |
dc.date.available | 2016-10-25T17:09:23Z | - |
dc.date.issued | 2009-11-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.crma.2009.09.018 | - |
dc.identifier.citation | Comptes Rendus Mathematique. Paris: Elsevier France-editions Scientifiques Medicales Elsevier, v. 347, n. 21-22, p. 1295-1298, 2009. | - |
dc.identifier.issn | 1631-073X | - |
dc.identifier.uri | http://hdl.handle.net/11449/22158 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/22158 | - |
dc.description.abstract | The purpose of this Note is to show that loci of (special) Weierstrass points on the fibers of a family pi: X -> S of smooth curves of genus g >= 2 can be studied by simply pulling back the Schubert calculus naturally living on a suitable Grassmann bundle over X. Using Such an idea we prove new results regarding the decomposition in A(*)(X) of the class of the locus of Weierstrass points having weight at least 3 as the SLIM of classes of Weierstrass points having "bounded from below" gaps sequences. To cite this article: L. Gatto, P Salehyan, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. | en |
dc.description.sponsorship | PRIN | - |
dc.description.sponsorship | INDAM-GNSAGA | - |
dc.description.sponsorship | Politecnico di Torino | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.format.extent | 1295-1298 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier France-editions Scientifiques Medicales Elsevier | - |
dc.source | Web of Science | - |
dc.title | Families of special Weierstrass points | en |
dc.type | outro | - |
dc.contributor.institution | Politecn Torino | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Politecn Torino, Dipartimento Matemat, I-10129 Turin, TO, Italy | - |
dc.description.affiliation | UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | - |
dc.description.affiliationUnesp | UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil | - |
dc.description.sponsorshipId | FAPESP: 08/04401-1 | - |
dc.identifier.doi | 10.1016/j.crma.2009.09.018 | - |
dc.identifier.wos | WOS:000271969800015 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Comptes Rendus Mathematique | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.