You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22160
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMessaoudi, Ali-
dc.contributor.authorNogueira, Arnaldo-
dc.contributor.authorSchweiger, Fritz-
dc.date.accessioned2014-05-20T14:02:54Z-
dc.date.accessioned2016-10-25T17:09:23Z-
dc.date.available2014-05-20T14:02:54Z-
dc.date.available2016-10-25T17:09:23Z-
dc.date.issued2009-07-01-
dc.identifierhttp://dx.doi.org/10.1007/s00605-008-0065-z-
dc.identifier.citationMonatshefte Fur Mathematik. Wien: Springer Wien, v. 157, n. 3, p. 283-299, 2009.-
dc.identifier.issn0026-9255-
dc.identifier.urihttp://hdl.handle.net/11449/22160-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/22160-
dc.description.abstractWe study the ergodic properties of a map called the Triangle Sequence. We prove that the algorithm is weakly convergent almost surely, and ergodic. As far as we know, it is the first example of a 2-dimensional algorithm where a surprising diophantine phenomenon happens: there are sequences of nested cells whose intersection is a segment, although no vertex is fixed. Examples of n-dimensional algorithms presenting this behavior were known for n >= 3.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
dc.format.extent283-299-
dc.language.isoeng-
dc.publisherSpringer Wien-
dc.sourceWeb of Science-
dc.subjectErgodic theoryen
dc.subjectInvariant measuresen
dc.titleErgodic properties of triangle partitionsen
dc.typeoutro-
dc.contributor.institutionSalzburg Univ-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInst Math Luminy-
dc.description.affiliationSalzburg Univ, Fachbereich Math, A-5020 Salzburg, Austria-
dc.description.affiliationUNESP, Dept Matemat, BR-15054000 Sao Jose do RioPreto, SP, Brazil-
dc.description.affiliationInst Math Luminy, F-13288 Marseille, France-
dc.description.affiliationUnespUNESP, Dept Matemat, BR-15054000 Sao Jose do RioPreto, SP, Brazil-
dc.description.sponsorshipIdCNPq: 481406/2004-2-
dc.description.sponsorshipIdCNPq: 302298/2003-7-
dc.description.sponsorshipIdFUNDUNESP: 00592/06-DF-
dc.identifier.doi10.1007/s00605-008-0065-z-
dc.identifier.wosWOS:000266830800007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMonatshefte Fur Mathematik-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.