You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22162
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArrieta, Jose M.-
dc.contributor.authorCarvalho, Alexandre N.-
dc.contributor.authorLozada-Cruz, German Jesus-
dc.date.accessioned2014-05-20T14:02:54Z-
dc.date.accessioned2016-10-25T17:09:23Z-
dc.date.available2014-05-20T14:02:54Z-
dc.date.available2016-10-25T17:09:23Z-
dc.date.issued2009-07-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jde.2009.03.014-
dc.identifier.citationJournal of Differential Equations. San Diego: Academic Press Inc. Elsevier B.V., v. 247, n. 1, p. 174-202, 2009.-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/11449/22162-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/22162-
dc.description.abstractIn this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a domain which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipMEC-
dc.description.sponsorshipPrograma de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid-
dc.description.sponsorshipSIMUMAT-Comunidad de Madrid, Spain-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent174-202-
dc.language.isoeng-
dc.publisherAcademic Press Inc. Elsevier B.V.-
dc.sourceWeb of Science-
dc.titleDynamics in dumbbell domains II. The limiting problemen
dc.typeoutro-
dc.contributor.institutionUniv Complutense Madrid-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Complutense Madrid, Dept Matemat Aplicada, Fac Matemat, E-28040 Madrid, Spain-
dc.description.affiliationUniv São Paulo, Dept Matemat, Inst Ciencias Matemat Computacao, BR-13560970 São Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, Dept Matemat, IBILCE, UNESP, BR-15054000 Sao Jose Dos Campos, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat, IBILCE, UNESP, BR-15054000 Sao Jose Dos Campos, Brazil-
dc.description.sponsorshipIdMEC: PHB2006-003-PC-
dc.description.sponsorshipIdMEC: MTM2006-08262-
dc.description.sponsorshipIdPrograma de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid: CCG07-UCM/ESP-2393-
dc.description.sponsorshipIdPrograma de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid: 920894-
dc.description.sponsorshipIdCNPq: 305447/2005-0-
dc.description.sponsorshipIdCNPq: 451761/2008-1-
dc.description.sponsorshipIdCAPES: 267/2008-
dc.description.sponsorshipIdFAPESP: 08/53094-4-
dc.description.sponsorshipIdFAPESP: 06/04781-3-
dc.description.sponsorshipIdFAPESP: 07/00981-0-
dc.identifier.doi10.1016/j.jde.2009.03.014-
dc.identifier.wosWOS:000266256900008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Differential Equations-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.