You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22166
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLlibre, Jaume-
dc.contributor.authorMessias, Marcelo-
dc.contributor.authorDa Silva, Paulo Ricardo-
dc.date.accessioned2014-05-20T14:02:55Z-
dc.date.accessioned2016-10-25T17:09:24Z-
dc.date.available2014-05-20T14:02:55Z-
dc.date.available2016-10-25T17:09:24Z-
dc.date.issued2012-06-01-
dc.identifierhttp://dx.doi.org/10.1142/S0218127412501544-
dc.identifier.citationInternational Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 22, n. 6, p. 17, 2012.-
dc.identifier.issn0218-1274-
dc.identifier.urihttp://hdl.handle.net/11449/22166-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/22166-
dc.description.abstractIn this paper, we perform a global analysis of the dynamics of the Chen system(x) over dot = a(y - x), (y) over dot = (c - a)x - xz + cy, (z) over dot = xy - bz,where (x, y, z) is an element of R-3 and (a, b, c) is an element of R-3. We give the complete description of its dynamics on the sphere at infinity. For six sets of the parameter values, the system has invariant algebraic surfaces. In these cases, we provide the global phase portrait of the Chen system and give a complete description of the alpha- and omega-limit sets of its orbits in the Poincare ball, including its boundary S-2, i.e. in the compactification of R-3 with the sphere S-2 of infinity. Moreover, combining the analytical results obtained with an accurate numerical analysis, we prove the existence of a family with infinitely many heteroclinic orbits contained on invariant cylinders when the Chen system has a line of singularities and a first integral, which indicates the complicated dynamical behavior of the Chen system solutions even in the absence of chaotic dynamics.en
dc.description.sponsorshipMICINN/FEDER-
dc.description.sponsorshipGeneralitat de Catalunya-
dc.description.sponsorshipICREA Academia-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent17-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectChen systemen
dc.subjectintegrabilityen
dc.subjectPoincare compactificationen
dc.subjectdynamics at infinityen
dc.subjectheteroclinic orbitsen
dc.subjectsingularly degenerate heteroclinic cyclesen
dc.subjectinvariant manifoldsen
dc.titleGLOBAL DYNAMICS IN THE POINCARE BALL of THE CHEN SYSTEM HAVING INVARIANT ALGEBRAIC SURFACESen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Autonoma Barcelona-
dc.description.affiliationUniv Estadual Paulista, UNESP, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 São Paulo, Brazil-
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Fac Ciencias & Tecnol, Dept Matemat Estat & Comp, BR-19060900 São Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 São Paulo, Brazil-
dc.description.sponsorshipIdMICINN/FEDER: MTM2008-03437-
dc.description.sponsorshipIdGeneralitat de Catalunya: 2009SGR-410-
dc.description.sponsorshipIdCNPq: 305204/2009-2-
dc.description.sponsorshipIdPHB-2009-0025-
dc.identifier.doi10.1142/S0218127412501544-
dc.identifier.wosWOS:000306505900031-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Bifurcation and Chaos-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.