You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKraenkel, Roberto André-
dc.contributor.authorLeon, J.-
dc.contributor.authorManna, M. A.-
dc.date.accessioned2014-05-20T14:05:44Z-
dc.date.accessioned2016-10-25T17:11:04Z-
dc.date.available2014-05-20T14:05:44Z-
dc.date.available2016-10-25T17:11:04Z-
dc.date.issued2005-11-15-
dc.identifierhttp://dx.doi.org/10.1016/j.physd.2005.09.001-
dc.identifier.citationPhysica D-nonlinear Phenomena. Amsterdam: Elsevier B.V., v. 211, n. 3-4, p. 377-390, 2005.-
dc.identifier.issn0167-2789-
dc.identifier.urihttp://hdl.handle.net/11449/23074-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23074-
dc.description.abstractIn the limit of small values of the aspect ratio parameter (or wave steepness) which measures the amplitude of a surface wave in units of its wave-length, a model equation is derived from the Euler system in infinite depth (deep water) without potential flow assumption. The resulting equation is shown to sustain periodic waves which on the one side tend to the proper linear limit at small amplitudes, on the other side possess a threshold amplitude where wave crest peaking is achieved. An explicit expression of the crest angle at wave breaking is found in terms of the wave velocity. By numerical simulations, stable soliton-like solutions (experiencing elastic interactions) propagate in a given velocities range on the edge of which they tend to the peakon solution. (c) 2005 Elsevier B.V. All rights reserved.en
dc.format.extent377-390-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectwater wavespt
dc.subjectasymptotic methodspt
dc.subjectnonlinear dynamicspt
dc.titleTheory of small aspect ratio waves in deep wateren
dc.typeoutro-
dc.contributor.institutionUniv Montpellier 2-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Montpellier 2, CNRS, UMR5207, F-34095 Montpellier, France-
dc.description.affiliationUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationUnespUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1016/j.physd.2005.09.001-
dc.identifier.wosWOS:000233340400009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysica D: Nonlinear Phenomena-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.