You are in the accessibility menu

Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGaletti, D.-
dc.contributor.authorMizrahi, S. S.-
dc.contributor.authorRuzzi, M.-
dc.identifier.citationJournal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 37, n. 50, p. L643-L648, 2004.-
dc.description.abstractA Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials.en
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleThe Wigner function associated with the Rogers-Szego polynomialsen
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationUNESP, IFT, BR-01405900 São Paulo, Brazil-
dc.description.affiliationUniv Fed Sao Carlos, Dept Fis, CCET, BR-13565905 Sao Carlos, SP, Brazil-
dc.description.affiliationUnespUNESP, IFT, BR-01405900 São Paulo, Brazil-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Physics A: Mathematical and General-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.