You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23181
Full metadata record
DC FieldValueLanguage
dc.contributor.authorda Rocha, R.-
dc.contributor.authorde Oliveira, E. Capelas-
dc.date.accessioned2014-05-20T14:06:04Z-
dc.date.accessioned2016-10-25T17:11:24Z-
dc.date.available2014-05-20T14:06:04Z-
dc.date.available2016-10-25T17:11:24Z-
dc.date.issued2007-02-01-
dc.identifierhttp://dx.doi.org/10.1007/s10773-006-9238-5-
dc.identifier.citationInternational Journal of Theoretical Physics. New York: Springer/plenum Publishers, v. 46, n. 2, p. 301-317, 2007.-
dc.identifier.issn0020-7748-
dc.identifier.urihttp://hdl.handle.net/11449/23181-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23181-
dc.description.abstractUsing conformal coordinates associated with conformal relativity-associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime-we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Poschl-Teller potential, here we deduce and analytically solve a conformal 'radial' d'Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this 'radial' equation can be identified with a Schrodinger-like equation in which the potential is exactly the second Poschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.en
dc.format.extent301-317-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectde Sitter spacetimept
dc.subjectquasinormal modespt
dc.subjectgravitational wavespt
dc.subjectconformal structurespt
dc.subjectd'Alembert equationpt
dc.subjectprojective relativitypt
dc.titleConformal Klein-Gordon equations and quasinormal modesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionIMECC-
dc.description.affiliationUniv Estadual Campinas, Inst Fis Gleb Wataghin, DRCC, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationIMECC, Dept Matemat Aplicada, BR-13083859 Campinas, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1007/s10773-006-9238-5-
dc.identifier.wosWOS:000244591000009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Theoretical Physics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.