You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDa Rocha, R.-
dc.contributor.authorVaz, J.-
dc.date.accessioned2014-05-20T14:06:49Z-
dc.date.accessioned2016-10-25T17:12:04Z-
dc.date.available2014-05-20T14:06:49Z-
dc.date.available2016-10-25T17:12:04Z-
dc.date.issued2006-11-01-
dc.identifierhttp://dx.doi.org/10.1142/S0219887806001661-
dc.identifier.citationInternational Journal of Geometric Methods In Modern Physics. Singapore: World Scientific Publ Co Pte Ltd, v. 3, n. 7, p. 1359-1380, 2006.-
dc.identifier.issn0219-8878-
dc.identifier.urihttp://hdl.handle.net/11449/23456-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23456-
dc.description.abstractZ(2)-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.en
dc.format.extent1359-1380-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectClifford algebraspt
dc.subjectspacetime splittingpt
dc.titleOn Clifford subalgebras, spacetime splittings and applicationsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Fis Gleb Wataghin, DRCC, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13083859 Campinas, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1142/S0219887806001661-
dc.identifier.wosWOS:000241997000008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Geometric Methods In Modern Physics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.