Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/23456
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Da Rocha, R. | - |
dc.contributor.author | Vaz, J. | - |
dc.date.accessioned | 2014-05-20T14:06:49Z | - |
dc.date.accessioned | 2016-10-25T17:12:04Z | - |
dc.date.available | 2014-05-20T14:06:49Z | - |
dc.date.available | 2016-10-25T17:12:04Z | - |
dc.date.issued | 2006-11-01 | - |
dc.identifier | http://dx.doi.org/10.1142/S0219887806001661 | - |
dc.identifier.citation | International Journal of Geometric Methods In Modern Physics. Singapore: World Scientific Publ Co Pte Ltd, v. 3, n. 7, p. 1359-1380, 2006. | - |
dc.identifier.issn | 0219-8878 | - |
dc.identifier.uri | http://hdl.handle.net/11449/23456 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/23456 | - |
dc.description.abstract | Z(2)-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed. | en |
dc.format.extent | 1359-1380 | - |
dc.language.iso | eng | - |
dc.publisher | World Scientific Publ Co Pte Ltd | - |
dc.source | Web of Science | - |
dc.subject | Clifford algebras | pt |
dc.subject | spacetime splitting | pt |
dc.title | On Clifford subalgebras, spacetime splittings and applications | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.description.affiliation | Univ Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil | - |
dc.description.affiliation | Univ Estadual Campinas, Inst Fis Gleb Wataghin, DRCC, BR-13083970 Campinas, SP, Brazil | - |
dc.description.affiliation | Univ Estadual Campinas, IMECC, Dept Matemat Aplicada, BR-13083859 Campinas, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, Brazil | - |
dc.identifier.doi | 10.1142/S0219887806001661 | - |
dc.identifier.wos | WOS:000241997000008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | International Journal of Geometric Methods In Modern Physics | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.