You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuzzi, M.-
dc.contributor.authorGaletti, D.-
dc.date.accessioned2014-05-20T14:07:10Z-
dc.date.accessioned2016-10-25T17:12:26Z-
dc.date.available2014-05-20T14:07:10Z-
dc.date.available2016-10-25T17:12:26Z-
dc.date.issued2000-02-11-
dc.identifierhttp://dx.doi.org/10.1088/0305-4470/33/5/317-
dc.identifier.citationJournal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 33, n. 5, p. 1065-1082, 2000.-
dc.identifier.issn0305-4470-
dc.identifier.urihttp://hdl.handle.net/11449/23585-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/23585-
dc.description.abstractThe main aspects of a discrete phase space formalism are presented and the discrete dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is discussed. A set of operator bases is defined in such a way that the Weyl-Wigner formalism is shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is shown not to be attained from discretization of the continuous case.en
dc.format.extent1065-1082-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleQuantum discrete phase space dynamics and its continuous limiten
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01450900 São Paulo, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01450900 São Paulo, SP, Brazil-
dc.identifier.doi10.1088/0305-4470/33/5/317-
dc.identifier.wosWOS:000085494600017-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Physics A: Mathematical and General-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.