You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/23615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAratyn, H.-
dc.contributor.authorFerreira, L. A.-
dc.contributor.authorZimerman, A. H.-
dc.date.accessioned2014-05-20T14:07:18Z-
dc.date.available2014-05-20T14:07:18Z-
dc.date.issued1999-08-30-
dc.identifierhttp://dx.doi.org/10.1103/PhysRevLett.83.1723-
dc.identifier.citationPhysical Review Letters. College Pk: American Physical Soc, v. 83, n. 9, p. 1723-1726, 1999.-
dc.identifier.issn0031-9007-
dc.identifier.urihttp://hdl.handle.net/11449/23615-
dc.description.abstractIn this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with nonzero Hopf topological charges) within the recently proposed (3 + 1)-dimensional, integrable, and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of linked closed vortices.en
dc.format.extent1723-1726-
dc.language.isoeng-
dc.publisherAmerican Physical Soc-
dc.sourceWeb of Science-
dc.titleExact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbersen
dc.typeoutro-
dc.contributor.institutionUniv Illinois-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Illinois, Dept Phys, Chicago, IL 60607 USA-
dc.description.affiliationUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.description.affiliationUnespUNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil-
dc.identifier.doi10.1103/PhysRevLett.83.1723-
dc.identifier.wosWOS:000082242600006-
dc.rights.accessRightsAcesso restrito-
dc.identifier.fileWOS000082242600006.pdf-
dc.relation.ispartofPhysical Review Letters-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.